首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In this article, we develop an exponential high order compact alternating direction implicit (EHOC ADI) method for solving three dimensional (3D) unsteady convection–diffusion equations. The method, which requires only a regular seven‐point 3D stencil similar to that in the standard second‐order methods, is second order accurate in time and fourth‐order accurate in space and unconditionally stable. The resulting EHOC ADI scheme in each alternating direction implicit (ADI) solution step corresponding to a strictly diagonally dominant matrix equation can be solved by the application of the one‐dimensional tridiagonal Thomas algorithm with a considerable saving in computing time. Numerical experiments for three test problems are carried out to demonstrate the performance of the present method and to compare it with the classical Douglas–Gunn ADI method and the Karaa's high‐order compact ADI method. © 2012 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 2013  相似文献   

2.
A compact alternating direction implicit (ADI) method has been developed for solving two‐dimensional parabolic differential equations. In this study, the second‐order derivatives with respect to space are discretized using the high‐order compact finite differences. The Peaceman‐Rachford ADI method is then used for developing a new ADI scheme. It is shown by the discrete Fourier analysis that this new ADI scheme is unconditionally stable. The method can be generalized to the three‐dimensional case and an unconditionally stable compact Douglas ADI scheme is obtained. The method is illustrated by numerical examples. © 2002 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 18: 129–142, 2002; DOI 10.1002/num.1037  相似文献   

3.
We derive a high‐order compact alternating direction implicit (ADI) method for solving three‐dimentional unsteady convection‐diffusion problems. The method is fourth‐order in space and second‐order in time. It permits multiple uses of the one‐dimensional tridiagonal algorithm with a considerable saving in computing time and results in a very efficient solver. It is shown through a discrete Fourier analysis that the method is unconditionally stable in the diffusion case. Numerical experiments are conducted to test its high order and to compare it with the standard second‐order Douglas‐Gunn ADI method and the spatial fourth‐order compact scheme by Karaa. © 2005 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq, 2006  相似文献   

4.
In this article, we extend the fourth‐order compact boundary scheme in Liao et al. (Numer Methods Partial Differential Equations 18 (2002), 340–354) to a 3D problem and then combine it with the fourth‐order compact alternating direction implicit (ADI) method in Gu et al. (J Comput Appl Math 155 (2003), 1–17) to solve the 3D reaction‐diffusion equation with Neumann boundary condition. First, the reaction‐diffusion equation is solved with a compact fourth‐order finite difference method based on the Padé approximation, which is then combined with the ADI method and a fourth‐order compact scheme to approximate the Neumann boundary condition, to obtain fourth order accuracy in space. The accuracy in the temporal dimension is improved to fourth order by applying the Richardson extrapolation technique, although the unconditional stability of the numerical method is proved, and several numerical examples are presented to demonstrate the accuracy and efficiency of the proposed new algorithm. © 2012 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq, 2013  相似文献   

5.
In this article, an exponential high-order compact (EHOC) alternating direction implicit (ADI) method, in which the Crank–Nicolson scheme is used for the time discretization and an exponential fourth-order compact difference formula for the steady-state 1D convection–diffusion problem is used for the spatial discretization, is presented for the solution of the unsteady 2D convection–diffusion problems. The method is temporally second-order accurate and spatially fourth order accurate, which requires only a regular five-point 2D stencil similar to that in the standard second-order methods. The resulting EHOC ADI scheme in each ADI solution step corresponds to a strictly diagonally dominant tridiagonal matrix equation which can be inverted by simple tridiagonal Gaussian decomposition and may also be solved by application of the one-dimensional tridiagonal Thomas algorithm with a considerable saving in computing time. The unconditionally stable character of the method was verified by means of the discrete Fourier (or von Neumann) analysis. Numerical examples are given to demonstrate the performance of the method proposed and to compare mostly it with the high order ADI method of Karaa and Zhang and the spatial third-order compact scheme of Note and Tan.  相似文献   

6.
于欣 《计算数学》1997,19(1):83-90
1.引言随着电子计算机的发展,越来越多的实际问题数值模拟成为现实,但还有很多非线性问题数值计算时间太长,内存要求过大.数值方法的改进可使计算量和存储量大大减少,例如,对二维非定常问题,要使误差达到N-4量级,二阶格式计算点数为(N2)3,(包括时间方向),而四阶格式计算点数仅为N3,差N3倍!而计算量差的倍数更多.当N=16时N3=4096,当N=256时,N31678万.紧致差分格式具有精度高,差分式基点少,<线性)稳定性好,对高频波分辨率高,边界差分点少等优点【’,‘,’,’。’,’,‘’],本文中的格式基点数为3,…  相似文献   

7.
Alternating direction implicit (ADI) schemes are computationally efficient and widely utilized for numerical approximation of the multidimensional parabolic equations. By using the discrete energy method, it is shown that the ADI solution is unconditionally convergent with the convergence order of two in the maximum norm. Considering an asymptotic expansion of the difference solution, we obtain a fourth‐order, in both time and space, approximation by one Richardson extrapolation. Extension of our technique to the higher‐order compact ADI schemes also yields the maximum norm error estimate of the discrete solution. And by one extrapolation, we obtain a sixth order accurate approximation when the time step is proportional to the squares of the spatial size. An numerical example is presented to support our theoretical results. © 2008 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 2010  相似文献   

8.
Dual‐phase‐lagging (DPL) equation with temperature jump boundary condition (Robin's boundary condition) shows promising for analyzing nanoheat conduction. For solving it, development of higher‐order accurate and unconditionally stable (no restriction on the mesh ratio) numerical schemes is important. Because the grid size may be very small at nanoscale, using a higher‐order accurate scheme will allow us to choose a relative coarse grid and obtain a reasonable solution. For this purpose, recently we have presented a higher‐order accurate and unconditionally stable compact finite difference scheme for solving one‐dimensional DPL equation with temperature jump boundary condition. In this article, we extend our study to a two‐dimensional case and develop a fourth‐order accurate compact finite difference method in space coupled with the Crank–Nicolson method in time, where the Robin's boundary condition is approximated using a third‐order accurate compact method. The overall scheme is proved to be unconditionally stable and convergent with the convergence rate of fourth‐order in space and second‐order in time. Numerical errors and convergence rates of the solution are tested by two examples. Numerical results coincide with the theoretical analysis. © 2015 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 31: 1742–1768, 2015  相似文献   

9.
In this paper, an implicit‐explicit two‐step backward differentiation formula (IMEX‐BDF2) together with finite difference compact scheme is developed for the numerical pricing of European and American options whose asset price dynamics follow the regime‐switching jump‐diffusion process. It is shown that IMEX‐BDF2 method for solving this system of coupled partial integro‐differential equations is stable with the second‐order accuracy in time. On the basis of IMEX‐BDF2 time semi‐discrete method, we derive a fourth‐order compact (FOC) finite difference scheme for spatial discretization. Since the payoff function of the option at the strike price is not differentiable, the results show only second‐order accuracy in space. To remedy this, a local mesh refinement strategy is used near the strike price so that the accuracy achieves fourth order. Numerical results illustrate the effectiveness of the proposed method for European and American options under regime‐switching jump‐diffusion models.  相似文献   

10.
In this article, an efficient fourth‐order accurate numerical method based on Padé approximation in space and singly diagonally implicit Runge‐Kutta method in time is proposed to solve the time‐dependent one‐dimensional reaction‐diffusion equation. In this scheme, we first approximate the spatial derivative using the second‐order central finite difference then improve it to fourth‐order by applying Padé approximation. A three stage fourth‐order singly diagonally implicit Runge‐Kutta method is then used to solve the resulting system of ordinary differential equations. It is also shown that the scheme is unconditionally stable, and is suitable for stiff problems. Several numerical examples are solved by the scheme and the efficiency and accuracy of the new scheme are compared with two widely used high‐order compact finite difference methods. © 2010 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 27: 1423–1441, 2011  相似文献   

11.
High-order compact finite difference method with operator-splitting technique for solving the two dimensional time fractional diffusion equation is considered in this paper. The Caputo derivative is evaluated by the L1 approximation, and the second order derivatives with respect to the space variables are approximated by the compact finite differences to obtain fully discrete implicit schemes. Alternating Direction Implicit (ADI) method is used to split the original problem into two separate one dimensional problems. One scheme is given by replacing the unknowns by the values on the previous level directly and a correction term is added for another scheme. Theoretical analysis for the first scheme is discussed. The local truncation error is analyzed and the stability is proved by the Fourier method. Using the energy method, the convergence of the compact finite difference scheme is proved. Numerical results are provided to verify the accuracy and efficiency of the two proposed algorithms. For the order of the temporal derivative lies in different intervals $\left(0,\frac{1}{2}\right)$ or $\left[\frac{1}{2},1\right)$ , corresponding appropriate scheme is suggested.  相似文献   

12.
本文研究了三维热传导方程的紧交替方向隐式差分格式.利用算子方法导出了紧交替方向隐式差分格式,并利用Fourier分析方法证明了差分格式的收敛性和绝对稳定性,Richardson外推法外推一次得到具有O(T3+h6)阶精度的近似解.本文方法是对二维热传导方程问题的推广,同样适用于多维的情形.  相似文献   

13.
Heat transport at the microscale is of vital importance in microtechnology applications. In this article, we proposed a new ADI difference scheme of the Crank‐Nicholson type for heat transport equation at the microscale. It is shown that the scheme is second order accurate in time and in space in the H1 norm. Numerical result implies that the theoretical analysis is correct and the scheme is effective. © 2004 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq, 2004  相似文献   

14.
In this article, a new compact alternating direction implicit finite difference scheme is derived for solving a class of 3‐D nonlinear evolution equations. By the discrete energy method, it is shown that the new difference scheme has good stability and can attain second‐order accuracy in time and fourth‐order accuracy in space with respect to the discrete H1 ‐norm. A Richardson extrapolation algorithm is applied to achieve fourth‐order accuracy in temporal dimension. Numerical experiments illustrate the accuracy and efficiency of the extrapolation algorithm. © 2012 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq, 2013  相似文献   

15.
本文主要研究高维带弱奇异核的发展型方程的交替方向隐式(ADI)差分方法.向后欧拉(Euler)方法联立一阶卷积求积公式处理时间方向的离散,有限差分方法处理空间方向的离散,并进一步构造了ADI全离散差分格式.然后将二维问题延伸到三维问题,构造三维空间问题的ADI差分格式.基于离散能量法,详细证明了全离散格式的稳定性和误差分析.随后给出了2个数值算例,数值结果进一步验证了时间方向的收敛阶为一阶,空间方向的收敛阶为二阶,和理论分析结果一致.  相似文献   

16.
An energy‐preserving scheme is proposed for the three‐coupled nonlinear Schrödinger (T‐CNLS) equation. The T‐CNLS equation is rewritten into the classical Hamiltonian form. Then the spatial variable is discretized by using high‐order compact method to convert it into a finite‐dimensional Hamiltonian system. Next, a second‐order averaged vector field (AVF) method is employed in time which results in an energy‐preserving scheme. Some theoretical results such as convergence are investigated. In addition, it provides some numerical examples to illustrate the robustness and reliability of the theoretical results. It also explores the role of the parameters in the model and initial condition on the wave propagation.  相似文献   

17.
In this article, we consider two‐dimensional fractional subdiffusion equations with mixed derivatives. A high‐order compact scheme is proposed to solve the problem. We establish a sufficient condition and show that the scheme converges with fourth order in space and second order in time under this condition.© 2017 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 33: 2141–2158, 2017  相似文献   

18.
Heat transport at the microscale is of vital importance in microtechnology applications. The heat transport equation differs from the traditional heat diffusion equation in having a second‐order derivative of temperature with respect to time and a third‐order mixed derivative of temperature with respect to space and time. In this study, we develop a high‐order compact finite difference scheme for the heat transport equation at the microscale. It is shown by the discrete Fourier analysis method that the scheme is unconditionally stable. Numerical results show that the solution is accurate. © 2000 John Wiley & Sons, Inc. Numer Methods Partial Differential Eq 16: 441–458, 2000  相似文献   

19.
We consider a mathematical model for thermal analysis in a 3D N‐carrier system with Neumann boundary conditions, which extends the concept of the well‐known parabolic two‐step model for micro heat transfer. To solve numerically the complex system, we first reduce 3D equations in the model to a succession of 1D equations by using the local one‐dimensional (LOD) method. The obtained 1D equations are then solved using a fourth‐order compact finite difference scheme for the interior points and a second‐order combined compact finite difference scheme for the points next to the boundary, so that the Neumann boundary condition can be applied directly without discretizing. By using matrix analysis, the compact LOD scheme is shown to be unconditionally stable. The accuracy of the solution is tested using two numerical examples. Results show that the solutions obtained by the compact LOD finite difference scheme are more accurate than those obtained by a Crank‐Nicholson LOD scheme, and the convergence rate with respect to spatial variables is about 2.6. © 2009 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 2010  相似文献   

20.
In this article, the solution of Camassa–Holm (CH) equation is solved by the proposed two‐step method. In the first step, the sixth‐order spatially accurate upwinding combined compact difference scheme with minimized phase error is developed in a stencil of four points to approximate the first‐order derivative term. For the purpose of retaining both of the long‐term accurate Hamiltonian property and the geometric structure inherited in the CH equation, the time integrator used in this study should be able to conserve symplecticity. In the second step, the Helmholtz equation governing the pressure‐like variable is approximated by the sixth‐order accurate three‐point centered compact difference scheme. Through the fundamental and numerical verification studies, the integrity of the proposed high‐order scheme is demonstrated. Another aim of this study is to reveal the wave propagation nature for the investigated shallow water equation subject to different initial wave profiles, whose peaks take the smooth, peakon, and cuspon forms. The transport phenomena for the cases with/without inclusion of the linear first‐order advection term κux in the CH equation will be addressed. © 2015 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 31: 1645–1664, 2015  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号