首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
通过对少量Zn掺杂Bi2212单晶样品不同温度下的磁滞回线的测量,根据Bean临界态模型得到了样品在不同温度和磁场下的临界电流密度.发现不同温度下的临界电流密度与磁场的关系可以用Jc(H,T)=Jc(0,T)exp(-Hα)进行拟合,并且拟合参量α随温度的上升而增大,而在Pb掺杂和纯Bi2212单晶中α值基本上是不随温度变化的.将得到的Jc与Pb掺杂和纯Bi2212单晶的结果进行比较,发现在相同的温度和磁场下Zn掺杂样品具有最高的临界电流密度,表明少量Zn掺杂使得样品的临界电流密度得到提高.Zn掺杂对Bi2212体系临界电流密度的提高主要来源于在材料中引入了有效的涡旋钉扎中心,而Pb掺杂体系中Jc的提高是体系的层间耦合增强导致的结果.  相似文献   

2.
利用X射线衍射、扫描电镜和SQUID磁强计研究了粉末熔化(PMP)YBa\-2Cu\-3O\-y和掺Gd 的YBCO超导体的微结构,超导性能、磁通钉扎特性及鱼尾效应等,发现在掺杂Gd的样品中当 温度低于70?K时出现鱼尾现象(H⊥c),而在纯YBCO中无鱼尾出现.添加Gd有助于提高 J\-c,增强钉扎,并认为由掺Gd所引起的Y\-2BaCuO\-5粒子尺寸的减小,应力场钉扎和 磁性钉扎是J\-c增加的原因. 关键词:  相似文献   

3.
本文通过磁性测量获得了葡萄糖掺杂MgB2块材样品的临界电流密度Jc,并利用集体钉扎模型分析了掺杂对其磁通钉扎机制的影响.研究发现,在纯样中δTc钉扎为主导钉扎机制;而在掺杂样品中,随着掺杂量的增加础钉扎所占比重逐渐增大到90%.剩余电阻率的计算结果也验证了掺杂样品中的钉扎机制变化.我们推断础钉扎主要是由碳对硼位掺杂引起...  相似文献   

4.
沈腾明  李果  赵勇 《低温物理学报》2005,27(Z1):864-869
为了研究超导材料中高温超导相颗粒的钉扎行为,在Ar气保护条件下,采用固相反应法制备了质量百分比为0,3,5和10%Bi2Sr2CaCu2O8含量的MgB2块状样品.用X射线衍射和扫描电子显微镜对样品进行了显微结构分析;用物理性能综合测试系统振动样品磁强计(最大磁场9T)测量了所有样品在不同磁场下的直流M(T)曲线,并测量了不同温度下的准静态磁化曲线,通过Bean临界态模型分析出Jc(H)曲线.随着掺杂量的增大掺杂后Tc基本不变,转变宽度略为增大;相比于未掺杂样品,掺杂量为3 wt%样品抗磁信号和临界电流密度有较大提高.显微结构分析结果表明,部分Bi2Sr2CaCu2O8分解为Cu2O和其它杂相,有部分Bi2Sr2CaCu2O8颗粒保留在样品内部,成为有效的钉扎中心.最后本文对超导体中的高温超导相颗粒的钉扎行为进行了分析.  相似文献   

5.
测量了 Bi2 Sr2 Ca Cu2 O8+δ单晶不同温度下的磁化曲线。根据 Bean临界态模型得到了不同温度下的钉扎力密度 FP 对磁场的依赖关系 ,发现在不同温度下的钉扎力密度可以标度在同一条曲线上。标度函数和最大钉扎力所对应的磁场与不可逆场 Hirr的比值都表明 Si2 Sr2 Ca Cu2 O8+δ单晶在磁通玻璃态的钉扎机制主要是正常相面钉扎。  相似文献   

6.
实验研究了掺氟 Bi(Pb)SrCaCuO 大块超导体的磁化、不可逆线和磁通蠕动行为.实验结果表明,掺氟不仅提高了 T_c,而且导致某些新的行为,并有增强磁通钉扎的迹象.讨论了不可逆线和钉扎势.  相似文献   

7.
为了研究超导材料中高温超导相颗粒的钉扎行为,在Ar气保护条件下,采用固相反应法制备了质量百分比为0,3,5和10%BizSr2CaCu2O8含量的MgB2块状样品.用X射线衍射和扫描电子显微镜对样品进行了显微结构分析;用物理性能综合测试系统振动样品磁强计(最大磁场9T)测量了所有样品在不同磁场下的直流M(T)曲线,并测量了不同温度下的准静态磁化曲线,通过Bean临界态模型分析出Jc(H)曲线.随着掺杂量的增大掺杂后Tc基本不变,转变宽度略为增大;相比于未掺杂样品,掺杂量为3wt%样品抗磁信号和临界电流密度有较大提高.显微结构分析结果表明,部分Bi2Sr2CaCu2O8分解为Cu2O和其它杂相,有部分Bi2Sr2CaCu2O8颗粒保留在样品内部,成为有效的钉扎中心.最后本文对超导体中的高温超导相颗粒的钉扎行为进行了分析.  相似文献   

8.
通过测量不同温度的磁滞回线和不同温度、不同磁场下的磁驰豫,对熔融织物YBa2CuOx样品的钉扎各向异性及211含量钉扎力的影响进行了研究(外加磁场分别平行和垂直于C轴),发现熔融织构样品的钉扎力具有强各向异性,这是由钉扎中心形状的各向异性导致的、临电流随211含量的增加反而降低,表明在这些样品中211相颗粒及其周围的缺陷对磁通钉扎起负作用,仅当外场平行于C轴时,才能观察到鱼尾效应,表明这些样品中至  相似文献   

9.
我们对低温下YBCO(123)超导薄膜样品中磁通的宏观量子蠕动效应进行了研究。用SQUID磁强计测量了厚度分别为2.4nm、6.0nm、10.8nm和40.0nm的YBCO超导超薄膜样品和厚度为200nm和YBCO薄膜样品的磁化驰豫性质。通过对样品磁化驰豫性质的分析我们在YBCO超导超薄膜样品中以观察到明显的磁通的宏观量子蠕动效应。各样品发生量子蠕动效应的温度Tct在8-15K之间,大大高于以前人们在YBCO单晶样品中观察到的1K的结果。  相似文献   

10.
通过对具有不同层间耦合强度的Bi2212单晶样品的磁滞回线的测量,得到了样品的临界电流密度Jc随层间耦合强度和磁场的变化关系.实验结果显示,样品的层间耦合减弱,Jc明显减小.同时发现Jc与磁场间存在Jc ∝ exp(-H^a)关系,进一步分析表明,Jc的这种磁场依赖关系是对数钉扎势垒模型的必然结果.  相似文献   

11.
The phase evolution during melting and recrystallization of (Bi,Pb)2Sr2Ca2Cu3O10 ((Bi,Pb)-2223) core in a Ag-sheathed monofilamentary tape has been investigated. The tape was fabricated by PIT process with powders containing nearly pure (Bi,Pb)-2223 phase. Short samples were melted at 805 °C, 808 °C, 812 °C, 816 °C, 831 °C, slowly cooled at 1.5 °C/h under flowing 1.6% O2 balanced with argon and quenched in air at room temperature. X-ray diffraction (XRD) and scanning electron microscopy coupled with energy dispersive spectroscopy (SEM/EDS) were applied for the phase identification. The results show that (Bi,Pb)-2223 core is partially melted into a liquid and alkaline earth cuprates (AECs), mainly 2:1-AEC, at 805 °C, 808 °C, 812 °C, and well reforms directly from the melt during the slow cooling. More (Bi,Pb)-2223 phase is decomposed at temperatures higher than 816 °C, but cannot recrystallize, indicating that a partial melting at some temperatures around a given temperature range is essential to (Bi,Pb)-2223 phase reformation. The melt composition moves from that between “2223” and “2212” stoichiometries towards 2212-like stoichiometry with increasing temperature. This seems to lead to the conclusion that (Bi,Pb)-2223 phase decomposes incongruently into a 2212-like liquid and (Ca,Sr)-cuprates. 2:1-AEC plays the most important role in (Bi,Pb)-2223 melt-recrystallization process. Our results also reveal that plate-like shape (Bi,Pb)-2223 grains can be obtained via melting and recrystallization if the optimum processing conditions are used.  相似文献   

12.
The Fermi surface (FS) of Bi2Sr2CaCu2O8+delta (Bi2212) predicted by band theory displays Bi-related pockets around the (pi, 0) point, which have never been observed experimentally. We show that when the effects of hole doping either by substituting Pb for Bi or by adding excess O in Bi2212 are included, the Bi-O bands are lifted above the Fermi energy (E(F)) and the resulting first-principles FS is in remarkable accord with measurements. With decreasing hole doping the Bi-O bands drop below and the system self-dopes below a critical hole concentration. Computations on other Bi- as well as Tl- and Hg-based compounds indicate that lifting of the cation-derived band with hole doping is a general property of the electronic structures of the cuprates.  相似文献   

13.
The present work investigates the effect of europium substitution on the(Bi,Pb)-2212 system in the concentration range 0.5 ≤ x ≤ 1.0.Phase analysis and lattice parameter calculations on the powder diffraction data and the elemental analysis of EDX show that the Eu atoms are successfully substituted into the(Bi,Pb)-2212 system.Resistivity measurements(64-300 K) reveal that the system exhibits superconductivity at x ≤ 0.5 and semiconductivity at x > 0.5.With the complete suppression of superconductivity which is known to be a quasi-two dimensional phenomenon in these materials,a metal to insulator transition takes place at x = 0.6 and the predominant conduction mechanism is found to be variable range hopping between localized states,resulting in macroscopic semiconducting behaviour.The results of electrical and structural properties of the doped(Bi,Pb)-2212 compounds suggest that the decrease of charge carrier concentration and the induced structural disorder are the more effective and dominant mechanisms in the origin of the metal to insulator transition and suppression of superconductivity due to Eu substitution at its Sr site.  相似文献   

14.
In the strict sense, it is not very clear why with magnetic field increasing, the normal-superconductive (NS) transition becomes broad for Bi2Sr2CaCu2O8+δ(Bi2212) while the NS transitions are almost parallel for La1.93Sr0.07CuO4+δ(La214). In this paper, R-T relations are measured by the six-probe method. We propose a moving mechanism of the pancake vortex and vortex line for Bi2212. The theoretical curves fit the experiment data well.  相似文献   

15.
We have measured intrinsic-tunneling spectra of a single CuO-layer La-doped Bi2(Sr(2-x)Lax)CuO(6+delta) (Bi2201-Lax). Despite a difference of a factor of 3 in the optimal superconducting critical temperatures for Bi2201-La0.4 and Bi2212 (32 and 95 K, respectively) and different spectral energy scales, we find that the pseudogap vanishes at a similar characteristic temperature T* approximately 230-300 K for both compounds. We find also that, in Bi2201-Lax, pseudogap humps are seen as sharp peaks and, in fact, even dominate the intrinsic spectra.  相似文献   

16.
Exfoliated Bi2Sr2CaCu2O8+δ (Bi‐2212) single crystals were prepared by micromechanical cleavage of bulk Bi‐2212 single crystals on SiO2/Si substrates. Room temperature micro‐Raman spectra were collected using a 532‐nm laser source. The evolutions of the spectra of A1g (Bi), A1g (Sr), and A1g (OBi) Raman modes with different thicknesses of the samples were studied. The refractive index of Bi‐2212 single crystal was obtained by studying the intensity evolutions based on the interference effect. The observed wavenumber shifts of the A1g (Bi), A1g (Sr), and A1g (OBi) modes were analyzed. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

17.
A d-wave, Eliashberg analysis of break-junction and STM tunneling spectra on Bi2Sr2CaCu2O(8+delta) (Bi2212) reveals that the spectral dip feature is directly linked to strong electronic coupling to a narrow boson spectrum, evidenced by a large peak in alpha2F(omega). The tunneling dip feature remains robust in the overdoped regime of Bi2212 with bulk T(c) values of 56 K-62 K. This is contrary to recent optical conductivity measurements of the self-energy that suggest the narrow boson spectrum disappears in overdoped Bi2212 and therefore cannot be essential for the pairing mechanism. The discrepancy is resolved by considering the way each technique probes the electron self-energy, in particular, the unique sensitivity of tunneling to the off-diagonal or pairing part of the self-energy.  相似文献   

18.
测量了Bi2 Sr2 CaCu2 O8单晶的ab面和c轴方向电阻 ,在其超导转变温度附近发现了反常的电阻峰出现 .其随外磁场 (>10 0Gs)和电流的增加而逐渐消失 .文章认为这个反常的电阻峰是由于单晶中超导相的不均匀分布而导致的准再进入行为 .  相似文献   

19.
We present high resolution angle resolved photoemission data of the bilayer superconductor Bi(2)Sr(2)CaCu(2)O(8+delta) (Bi2212) showing a clear doubling of the near E(F) bands. This splitting approaches zero along the (0,0)-->(pi,pi) nodal line and is not observed in single layer Bi(2)Sr(2)CuO(6+delta) (Bi2201), indicating that the splitting is due to the long sought after bilayer splitting effect. The splitting has a magnitude of approximately 75 meV near the middle of the zone, extrapolating to about 110 meV near the (pi,0) point. The existence of these two bands also helps to clear up the recent controversy concerning the topology of the Fermi surface.  相似文献   

20.
The single-crystalline specimens of the Fe-doped (5% 57Fe) Bi2Sr2CaCu2O8 (2212Cu) compound have been synthesized to compare the behavior of the structure modulation in Bi-cuprate and Bi-ferrate compounds. According to the Mössbauer data obtained, one can conclude that extra oxygen, related to the presence of Cu3+ in 2212Cu, is most probably arranged in the Ca layer rather than in the Bi layer, as was supposed in the model of extra oxygen. Based on the analysis of the experimental data we propose the explanation of the structure modulation in Bi compounds. Due to the mismatch between the internal perovskite block and the external BiO layers the structure of the Bi compounds is distorted. The Sr layer being boundary between these blocks probably is most distorted and stressed. We suppose that the different changes related to the modulation can occur just in this layer. The Bi excess, which is always present in Bi compounds (especially in single crystals), can be just the necessary condition at which the modulation appears. Extra oxygen in principle can be present in modulated structures. However, in our opinion, it only complements the influence of other factors and is not the driving force in the structure modulation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号