首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
Owing to no complications caused by solid supports, such as adsorptive sample loss and deactivation, tailing of solute peaks, and contamination, countercurrent chromatography (CCC) has been an area of intense research since the first introduction of CCC in 1970,[1] and various apparatus and broad applications have been advanced[2,3]. For these developments, the type-J synchronous planet centrifuge has received considerable attention, which relies not only on its relatively simple mechanic design, but also on its high partition efficiency and short elution time caused by mixing and settling for the efficient chromatographic separations. In the past, however, almost all of type-J centrifuges rotated slowly were disposed horizontally due to the original design and some experiments that gravis plays an important role at a low rotary speed as similar to type-V rotating multilayer helical tube in unit gravity[4-9]. In fact,we discovered that the upright apparatus holds more retention of stationary phase than the horiziontal aparatus when large standard tubings were used as mutilayer coil column and the aparatus was operated under same contions. We report here a new coil planet centrifuge with four upright cylindrical columns for large scale countercurrent chromatographic preparation. The design principle and apparatus of UCCC is as samilar to type-J multilayer coil planet centrifuge. Four uptight cylindrical column holders are symmetrically arranged around the centrifuge axis as similar to the type-J HSCCC with three horizontal multilayer coils connected in series[8] . A series of experiments indicat that upright CCC has many advantages over the horizontal CCC when using a large-bore tube as multilayer coil column for large scale countercurrent chromatographic separation.Upright CCC provide a versatile countercurrent chromatographic method for large-scale preparation from very crude sample. It has good preparative capacity and flexible suitability to various sample and two-phase system.The present apparatus not only can be operated at a high speed as similar as commonly used HSCCC for the system having short settling time and but also can be run at a low speed for the system having relative long settling time. Because of automatical control and seal-free flow through device, the uptight CCC apparatus may be readily scaled up to industrial preparation.  相似文献   

2.
Unlike the existing 2-D pseudo-ring model for helical columns undergoing synchronous type-J planetary motion of counter-current chromatograph (CCC), the 3-D "helix" model developed in this work shows that there is a second normal force (i.e. the binormal force) applied virtually in the axial direction of the helical column. This force alternates in the two opposite directions and intensifies phase mixing with increasing the helix angle. On the contrary, the 2-D spiral column operated on the same CCC device lacks this third-dimensional mixing force. The (principal) normal force quantified by this "helix" model has been the same as that by the pseudo-ring model. With β>0.25, this normal centrifugal force has been one-directional and fluctuates cyclically. Different to the spiral column, this "helix" model shows that the centrifugal force (i.e. the hydrostatic force) does not contribute to stationary phase retention in the helical column. Between the popular helical columns and the emerging spiral columns for type-J synchronous CCC, this work has thus illustrated that the former is associated with better phase mixing yet poor retention for the stationary phase whereas the latter has potential for better retention for the stationary phase yet poor phase mixing. The methodology developed in this work may be regarded as a new platform for designing optimised CCC columns for analytical and engineering applications.  相似文献   

3.
Sequential centrifugal layer chromatography (SCLC), a new preparative planar separation technique, combines the advantages of preparative centrifugal layer chromatography (CLC) and analytical, horizontal, anticircular, and sequential thin-layer chromatography (TLC). In this on-line preparative method, solvent delivery is locally and temporally variable, which means that the mobile phase can be brought onto the plate at any desired place. The SCLC apparatus operates in two modes: circular, with the help of centrifugal force in an inclined position, and anticircular, by means of capillary action in a horizontal position. These two operation modes can be combined and repeated as often as required, hence the separation space becomes practically unlimited. In this way the capacity and separation performance is significantly increased. In the present paper the apparatus and the method are described and some practical aspects are mentioned.  相似文献   

4.
Type-I coil planet centrifuge produces a uniformly circulating centrifugal force field to produce vortex motion of two immiscible solvent phases in a cylindrical cavity of the separation column to perform efficient countercurrent chromatography. The partition efficiency obtained from the original vortex column was substantially improved by threading the cylindrical cavity to increase the area of mass transfer between the two phases. Partition efficiency of the threaded column was evaluated by three different two-phase solvent systems with a broad range of hydrophobicity each with a set of suitable test samples. Overall results of the present studies indicated that the threaded cylindrical column substantially improves the partition efficiency in terms of theoretical plate number, peak resolution, and height equivalent of one theoretical plate. The results also indicated that higher peak resolution is produced by eluting either the upper phase in the head to tail direction or the lower phase in the reversed direction. When there is a choice in the mobile phase, a better separation is achieved by using the less viscous phase as the mobile phase. Since the present system gives extremely low column pressure, it may be a potential alternative to the conventional type-J HSCCC system for a large-scale preparative separation.  相似文献   

5.
Berthod A  Schmitt N 《Talanta》1993,40(10):1489-1498
Countercurrent chromatography (CCC) is a separation technique in which the stationary phase is a liquid. The liquid stationary phase retention is a critical problem in CCC. The retention of 18 organic solvents in a hydrodynamic CCC apparatus was measured with an aqueous mobile phase, the centrifuge spin rate and the mobile phase flow rate being constant, 800 rpm and 2 ml/min, respectively. Conversely, water retention was measured when the 18 solvents were the mobile phases. A direct relationship between the liquid stationary phase retention and the phase density difference was found. The liquid phase density difference is the most important parameter for stationary phase retention in a hydrodynamic CCC apparatus with coiled tubes. The chromatographic retention of formanilide was measured in biphasic systems and expressed as the formanilide partition coefficient. It is shown that the partition coefficient correlates with the Reichardt polarity index of the organic solvent when the liquid stationary phase retention volume does not.  相似文献   

6.
Statistical studies were made to correlate the hydrodynamic behavior of two-phase solvent system in counter-current chromatography (CCC) to their physical properties including interfacial tension, viscosity, and the difference in density of the two phases. Settling time measured under unit gravity provided a reliable numerical index for the hydrodynamic behavior of the solvent systems in a centrifugal force field. Viscosity and settling time were strongly correlated (correlation coefficient, r = +0.88) while interfacial tension (r = -0.65) and phase density difference (r = -0.45) showed moderate and weak correlation, respectively. Studies of the effect of temperature on settling time as well as a preliminary apparatus operated at higher temperature show that raising the temperature will improve the performance of high-speed CCC.  相似文献   

7.
Countercurrent chromatography (CCC) is an attractive separation method because the analytes are partitioned between two immiscible liquid phases avoiding problems related to solid stationary phase. In recent years, this technique has made great progress in separation power and detection potential. This review describes coupling strategies involving high speed CCC (HSCCC) or centrifugal partition chromatography (CPC). It includes on-line extraction–isolation, hyphenation with mass spectrometry (MS) and nuclear magnetic resonance (NMR) detectors, multidimensional CCC (MDCCC), two-dimensional CCC (2D-CCC), on-line coupling with liquid chromatography (LC), and biological tests, and innovative off-line developments. The basic principles of each method are presented and applications are summarized.  相似文献   

8.
Wu S  Sun C  Pei S  Lu Y  Pan Y 《Journal of chromatography. A》2004,1040(2):193-204
A versatile counter-current chromatography (CCC) with upright type-J multilayer coil planet centrifuge, named upright CCC, was applied to the isolation and purification of amides from Piper longum L., which is widely used as an anodyne and a treatment for stomach disease in China. After the saponification by KOH of the ethanol extracts solution of 15 kg of crude drug "Piper Longi Fructus", the fruits of P. longum L., the solution was extracted with light petroleum and 500 g of red crude oil was obtained. Using 2.5 g of red crude oil as sample, the preparative upright CCC with a two-phase system composed of light petroleum (bp 60-90 degrees C)-ethyl acetate-tetrachloromethane-methanol-water (1:1:8:6:1, v/v) was successfully performed, which yielded nine fractions. Then these fractions were further purified by use of reversed-phase liquid chromatography (RPLC) with a glass column of 500 x 10 mm i.d. packed with reversed-phase silica gel. As a result, nine target amides with over 95% purity, i.e., 50 mg of (2E,4E)-N-isobutyl-eicosa-2,4-dienamide, 150 mg of (2E,4E,14Z)-N-isobutyl-eicosa-2,4,14-trienamide, 110 mg of (2E,4E,12Z)-N-isobutyl-ocatadeca-2,4,12-trienamide, 50 mg of guineensine, 60 mg of pipernonaline, 75 mg of pellitorine, 63 mg of piperine, 45 mg of piperanine, and 40 mg of piperlonguminine were isolated, respectively. Structures of all compounds were identified by electrospray ionization MS, electron impact ionization MS, one- and two-dimensional NMR spectra.  相似文献   

9.
Abstract

Development of the large-scale preparative countercurrent chromatographic schemes has been continued by increasing the diameter of the separation column. A 0.55 cm i.d. FEP tube was coaxially coiled around the holder (7.5 cm, 10 cm or 15 cm in diameter) of a horizontal flow-through coil planet centrifuge (15 cm revolutional radius). Performance of each column was evaluated on the separation of dinitrophenyl amino acid samples with a two-phase solvent system composed of chloroform, acetic acid, and 0.1N hydrochloric acid (2:2:1) by using both aqueous and nonaqueous phases as the mobile phase. Experiments with the short preliminary columns (114 ml capacity) revealed that the hydrodynamic distribution of the two solvent phases was sensitively affected by the helical diameter of the column. However, by choosing the proper elution mode of the mobile phase, satisfactory results were obtained with the helical diameters of 7.5 cm and 15 cm at a high flow rate of 500 ml/h under a moderate revolutional speed of 300 rpm. With the long coiled columns (750 ml capacity), the preparative capability of the present scheme was successfully demonstrated on separations of the 1g-quantity sample mixture under optimized operational conditions. Overall results indicated that the sample-loading capacity of the present scheme can be further increased by the use of longer and/or larger-diameter columns.  相似文献   

10.
The potentialities of rotating coiled columns in countercurrent chromatography (CCC) and centrifugal field-flow fractionation (CFFF) are demonstrated. A rotating coiled column is a fluoroplastic or steel coil wound around a rigid cylindrical drum, which revolves about its axis and, at the same time, revolves around the central axis of the device called planet centrifuge. The stationary (liquid, solid, or heterogeneous) phase is retained in the column because of the centrifugal force field, and the mobile liquid phase is continuously pumped through the column. The methods for recovery, separation, and preconcentration of various trace elements in geological samples and high-purity substances with the use of two-phase liquid systems (CCC) are developed. Procedures are proposed for the continuous sequential extraction of various element species from soil and for the recovery of polycyclic aromatic hydrocarbons from sewage sludge with the use of natural suspensions or solid particulates as stationary phases. It is also shown that rotating coiled columns can be used in a new field, microparticle fractionation by CFFF.  相似文献   

11.
建立了中空纤维分离-HPLC测定静脉注射用人免疫球蛋白中的麦芽糖含量的方法.在离心力的作用下,样品溶液中的小分子物质能透过垂直放置在离心管中的中空纤维,同时离心力也减小了膜外大分子形成的浓差极化.采用Inertsil NH2色谱柱(250 mm×4.6 mm,5 μm)及示差折光检测器,流动相为V(乙腈)∶V(水)=70∶ 30,柱温40 ℃,流速为1.0 mL/min.麦芽糖浓度在1.00~5.00 g/L范围内线性关系良好(r=0.9999),平均加标回收率为100.6%,RSD为1.4%.本方法简便快速、结果准确,克服了蛋白沉淀不完全,吸附严重等现象,为微量样品的分析提供了简单廉价超滤手段,适用于蛋白类制品小分子样品的前处理.  相似文献   

12.
Counter-current chromatography (CCC) is a form of liquid–liquid partition chromatography. It requires two immiscible solvent phases; the stationary phase is retained in the separation column, generally by centrifugal force, while the mobile phase is eluted. We recently replaced the mobile phase with supercritical fluid carbon dioxide (SF CO2). Since the solvent strength of SF CO2 can be varied by changing the temperature and pressure of the system, separation adjustments are thus more versatile. We investigated the pressure and temperature effects on resolution using water and low-carbon alcohol mixtures as the stationary phases. It was demonstrated that these special properties of SF CO2 were indeed beneficial to the optimization of separations. In addition, the phase retention ratio was examined in terms of separation resolution. The results appeared very similar to those obtained from conventional traditional CCC. This study should be helpful for the future development of SF applications in CCC.  相似文献   

13.
A new counter-current chromatography (CCC) method with an upright coil planet centrifuge, which holds four identical multilayer coil columns in the symmetrical positions around the centrifuge axis, was applied to the isolation and purification of celastrol from the roots of Celastrus orbiculatus Thunb. The crude celastrol was obtained by elution with light petroleum from ethanol extracts using 15 cm x 5 cm i.d. silica gel flash chromatography. Preparative CCC with a two-phase system composed of light petroleum (bp 60-90 degrees C)-ethyl acetate-tetrachloromethane-methanol-water (1:1:8:6:1, v/v) was successfully performed, yielding 798 mg celastrol at 99.5% purity from 1020 mg of the crude sample in one step separation.  相似文献   

14.
Xueling Du  Ye Li  Qipeng Yuan 《Chromatographia》2009,70(11-12):1547-1552
The chemometric approach combining Box–Behnken response surface model and Derringer’s desirability function was applied for simultaneous optimization of resolution and analysis time in countercurrent chromatography (CCC). The mergence of the two parameters was accomplished using the Derringer’s desirability function with subsequent optimization by a Box–Behnken response surface design. The developed model was checked by statistical analysis. By implementing the optimal flow rate, rotation speed and temperature predicted by the validated model, enhanced resolution between two similar analytes (phenol and resorcinol) was achieved in a reasonable time. The analyses and results obtained in this paper will benefit to improve the efficiency of CCC separation.  相似文献   

15.
Du  Xueling  Li  Ye  Yuan  Qipeng 《Chromatographia》2009,70(11):1547-1552

The chemometric approach combining Box–Behnken response surface model and Derringer’s desirability function was applied for simultaneous optimization of resolution and analysis time in countercurrent chromatography (CCC). The mergence of the two parameters was accomplished using the Derringer’s desirability function with subsequent optimization by a Box–Behnken response surface design. The developed model was checked by statistical analysis. By implementing the optimal flow rate, rotation speed and temperature predicted by the validated model, enhanced resolution between two similar analytes (phenol and resorcinol) was achieved in a reasonable time. The analyses and results obtained in this paper will benefit to improve the efficiency of CCC separation.

  相似文献   

16.
Peng A  Li R  Hu J  Chen L  Zhao X  Luo H  Ye H  Yuan Y  Wei Y 《Journal of chromatography. A》2008,1200(2):129-135
In this paper, high-speed counter-current chromatography (HSCCC) instruments with different gravitational forces were applied for the separation of bioactive compounds from Triperygium wilfordii Hook.f. The critical parameters including sample concentration, sample volume and flow rate were first optimized on an analytical Mini-DE HSCCC system, and then scaled up to a preparative TBE 300A HSCCC system. Although this scale-up process was performed using different CCC instruments with different centrifuges and gravitational forces, the same resolutions were obtained and the elution time could be predictable. Five diterpenoid compounds and one unknown compound were separated from Triperygium wilfordii Hook.f. by HSCCC with a two-phase solvent system composed of n-hexane-ethyl acetate-methanol-water (HEMW) (3:2:3:2, v/v/v/v). This one-step flow gradient separation produced triptonide (25 mg), isoneotriptophenolide (77 mg), hypolide (83 mg), unknown compound (1 mg), triptophenolide (42 mg), triptonoterpene methyl ether VI (37 mg) from 320 mg crude extract with purities of 98.2%, 96.6%, 98.1%, 95.3%, 95.1%, and 96.5%, respectively. Their purities and structures were identified by high-performance liquid chromatography, mass spectrometry and NMR. This paper demonstrates that analytical CCC plays an important role in optimizing parameters and scale-up process when analytical CCC and preparative CCC are supplied by different manufacturers with different gravitational forces, and the scale-up process from analytical CCC to preparative CCC is still predictable.  相似文献   

17.
Counter-current chromatographic separation of proteins was performed using a rotary-seal-free nonsynchronous coil planet centrifuge (CPC) fabricated in our laboratory. This apparatus has a unique feature that allows a freely adjustable rotational rate of the coiled separation column at a given revolution speed. The separation was performed using a set of stable proteins including cytochrome c, myoglobin and lysozyme with two different types of aqueous-aqueous polymer phase systems, i.e., PEG (polyethylene glycol) 1000-dibasic potassium phosphate, and PEG 8000-dextran T500 in 5 mM potassium phosphate buffer. Using a set of multilayer coiled columns prepared from 0.8 mm I.D. PTFE tubing with different volumes (11, 24, 39 ml), the effect of the column capacity on the partition efficiency was investigated under a given set of experimental conditions. Among these experiments, the best separation of proteins was attained using the 39 ml capacity column with a 12.5% (w/w) PEG 1000-12.5% (w/w) dibasic potassium phosphate system at 10 rpm of coil rotation under 800 rpm. With lower phase mobile at 0.2 ml/min in the head-to-tail elution, the resolution between cytochrome c and myoglobin was 1.6 and that between myoglobin and lysozyme, 1.9. With upper phase mobile in the head-to-tail elution, the resolution between lysozyme and myoglobin peaks was 1.5. In these two separations, the stationary phase retention was 35.0 and 33.3%, respectively. Further studies were carried out using a pair of eccentric coil assemblies with 0.8 mm I.D. PTFE tubing at a total capacity of 20 ml. A comparable resolution was obtained using both lower and upper phases as a mobile phase in a head-to-tail elution. The results of our studies demonstrate that the nonsynchronous CPC is useful for protein separation with aqueous-aqueous polymer phase systems.  相似文献   

18.
Dual high-speed countercurrent chromatography (dual CCC) literally permits countercurrent flow of two immiscible solvent phases continuously through the coiled column for separation of solutes according to their partition coefficients. Application of this technique has been successfully demonstrated by separation of analytes by gas–liquid and liquid–liquid two-phase systems. However, the method cannot be directly applied to the system with a set of coiled columns connected in series, since the countercurrent process is interrupted at the junction between the columns. However, this problem can be solved by intermittent dual CCC by eluting each phase alternately through the opposite ends of the separation column. This mode of application has an advantage over the conventional dual CCC in that the method can be applied to all types of CCC systems including hydrostatic equilibrium systems such as toroidal coil CCC and centrifugal partition chromatography. Recently, the application of this method to high-speed CCC (hydrodynamic system) has been demonstrated for separation of natural products by Hewitson et al. using a set of conventional multilayer coil separation columns connected in series. Here, we have developed a mathematical model for this intermittent dual CCC system to predict retention time of the analytes, and using a simplified model system the validity of the model is justified by a series of basic studies on both hydrodynamic and hydrostatic CCC systems with a computer-programmed single sliding valve. The present method has been successfully applied to spiral tube assembly high-speed CCC (hydrodynamic system) and toroidal coil CCC (hydrostatic system) for separation of DNP-amino acid samples with two biphasic solvent systems composed of hexane–ethyl acetate–methanol–0.1 M hydrochloric acid (1:1:1:1 and 4:5:4:5, v/v).  相似文献   

19.
Abstract

Countercurrent chromatography (CCC) has been successfully applied for the separation of plant hormones; namely, indole auxins, gibberellins, cytokinins and abscisic acid. In our present study three different types of CCC devices were evaluated for their performance in separation of plant hormones with a special emphasis on analysis and purification of abscisic acid (ABA). A large-scale preparative CCC apparatus consisting of a slowly rotating coil assembly was used for preliminary separations of ABA from a large volume of crude plant extracts. The toroidal coil planet centrifuge (CPC) for analytical-scale separations was subsequently applied for purification of ABA, the final confirmation being obtained by HPLC and combined gas chromatographic-mass spectrometric method. This two-step procedure utilizing preparative CCC and toroidal CPC was successfully applied for determination of ABA content in several plant tissues. A recently introduced high-speed CCC apparatus was tested for semipreparative separation of ABA and indole-3-acetic acid. The method yielded high peak resolution within 2 hours.  相似文献   

20.
基于高速逆流色谱(HSCCC)技术从玛咖中分离制备出两种芥子油苷,苄基芥子油苷(glucotropaeolin, GTL)和甲氧基苄基芥子油苷(glucolimnanthin, GLI)。使用正交设计试验对分离条件进行优化,采用高分辨质谱对制备的组分进行鉴定,采用高效液相色谱法(HPLC)对组分进行定量分析。确定了两个组分GTL与GLI的HSCCC最佳分离条件:溶剂系统为正丁醇-乙腈-200 g/L硫酸铵溶液(1:0.5:2.4, v/v/v),上相为固定相,下相为流动相,流动相流速2 mL/min,主机转速900 r/min,从玛咖根粗提物中一次性分离得到157.72 mg/kg纯度为97.9%的苄基芥子油苷和31.93 mg/kg的甲氧基苄基芥子油苷,固定相保留率达57.6%。该方法成本低,简便易行,样品损失量小,可大量循环进样制备。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号