首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Poly(ethylene glycol)(PEG)‐based interpenetrating polymeric network (IPN) hydrogels were prepared for the application of enzyme immobilization. Poly(acrylamide)(PAAm) was chosen as the other network of IPN hydrogel and different concentration of PAAm networks were incorporated inside the PEG hydrogel to improve the mechanical strength and provide functional groups that covalently bind the enzyme. Formation of IPN hydrogels was confirmed by observing the weight per cent gain of hydrogel after incorporation of PAAm network and by attenuated total reflectance/Fourier transform infrared (ATR/FTIR) analysis. Synthesis of IPN hydrogels with higher PAAm content produced more crosslinked hydrogels with lower water content (WC), smaller Mc and mesh size, which resulted in enhanced mechanical properties compared to the PEG hydrogel. The IPN hydrogels exhibited tensile strength between 0.2 and 1.2 MPa while retaining high levels of hydration (70–81% water). For enzyme immobilization, glucose oxidase (GOX) was immobilized to PEG and IPN hydrogel beads. Enzyme activity studies revealed that although all the hydrogels initially had similar enzymatic activity, enzyme‐immobilizing PEG hydrogels lost most of the enzymatic activity within 2 days due to enzyme leaching while IPN hydrogels maintained a maximum 80% of the initial enzymatic activity over a week due to the covalent linkage between the enzyme and amine groups of PAAm. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

2.
In this paper we report a novel method for preparing interpenetrating polymer hydrogels of agarose and polyacrylamide (PAAm) in three steps. The procedure consists in (i) formation of physical hydrogels of agarose, (ii) diffusion of acrylamide, N,N′-methylene-bis-acrylamide and potassium persulfate (the initiator) from aqueous solutions inside the gel of agarose, and (iii) cross-linking copolymerization reaction of the aforementioned reactants to produce PAAm chemical gels interpenetrated with the agarose physical gels. Viscoelasticity measurements and thermal analysis have been performed in order to follow the kinetics of copolymerization. The viscoelastic, swelling and thermal properties of the resulting hydrogels confirm the formation of an interpenetrated system. Further evidence of interpenetration is obtained from inspection with atomic force microscopy. The improvement of the agarose and PAAm gel properties in the resulting interpenetrated hydrogel is analyzed in view of the results.  相似文献   

3.
The synthesis and characterization of solution‐cast, molded gels of N‐vinyl formamide (NVF) has not been previously reported even though NVF is an isomer of acrylamide (AAm) and polyacrylamide (PAAm) hydrogels have many commercial applications. Aqueous NVF solutions were cross‐linked into gels using a novel cross‐linker, 2‐(N‐vinylformamido)ethylether, and the thermally‐activated initiator VA‐044. For a given formulation, PNVF gels swell up to twice that of PAAm gels cross‐linked with N,N′‐methylenebisacrylamide. From swelling and compression measurements, PNVF gels were found to be more hydrophilic than PAAm gels. Flory‐Huggins solubility parameters were χ = 0.38?2 + 0.48 for PNVF and χ = 0.31?2 + 0.49 for PAAm, where ?2 is the polymer volume fraction. The shear moduli for PNVF and PAAm scale with ? and ? respectively, consistent with good solvent behavior, also suggesting PNVF is more hydrophilic than PAAm. Similarity of mechanical properties for both gels as a function of ?2 suggests that network structures of PNVF and PAAm gels are similar. Fracture strains of both gels declined with ?2 by the same linear function while fracture stresses were about 500 kPa regardless of formulation. Since NVF is a liquid monomer, less toxic than AAm and can be hydrolyzed to a cationic form, PNVF gels could become technologically significant. © 2012 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2013  相似文献   

4.
Poisson's ratio (μ0) of polyacrylamide (PAAm) gels was estimated. The value of μ0 for PAAm gels was found to be 0.457, which is close to that for poly (vinyl alcohol) (PVA) gels swollen in the mixture of dimethylsulfoxide (DMSO) and water, but is higher than the value for PVA hydrogels.  相似文献   

5.
The rigidity of a cell's substrate or extracellular matrix plays a vital role in regulating cell and tissue functions. Polyacrylamide (PAAm) hydrogels are one of the most widely used cell culture substrates that provide a physiologically relevant range of stiffness. However, it is still arduous and time-consuming to prepare PAAm substrates in large batches for high-yield or multiscale cell cultures. In this communication, a simple method to prepare PAAm hydrogels with less time cost and easily accessible materials is presented. The hydrogel is mechanically uniform and supports cell culture in a large batch. It is further shown that the stiffness of the hydrogel covers a large range of Young's modulus and is sensed by cells, regulating various cell features including changes in cell morphology, proliferation, and contractility. This method improves the reproducibility of mechanobiology studies and can be easily applied for mechanobiology research requiring large numbers of cells or experimental groups.  相似文献   

6.
采用分步法用电子加速器辐射合成了聚丙烯酰胺(PAAm)/聚异丙基丙烯酰胺(PNIPAAm)互穿网络水凝胶,并考察了温度、pH值、离子强度对其溶胀性能的影响.研究表明:互穿水凝胶具有温度敏感性,且其体积相变与互穿网络中PAAm和PNIPAAm含量有关,随着网络中PAAm含量的增加水凝胶的体积相变趋于平缓,可以通过改变PAAm和PNIPAAm的组成比来控制水凝胶的体积相变行为.此外,互穿水凝胶还具有pH敏感性和一定的抗盐性.  相似文献   

7.
In this work, hydrogels of polyacrylamide (or PAAm) with confined lyotropic liquid crystal (potassium laurate-decanol-water, KL-DeOH-H2O) (or LLC) were synthesized. The hydrogels were characterized by polarized optical microscopy (POM), refractometry, optical transmission, scanning electron microscopy (SEM) and small angle X-ray scattering (SAXS). Besides these techniques, the hydrophilicity of hydrogels was characterized by the degree of swelling. Based on POM, it was observed that the texture of the birefringent hydrogels obtained depends on their cross-linking density, and that it is formed soon after hydrogel synthesis. Refractometry results indicated an behavior antagonist to that obtained for the system constituted by thermotropic liquid crystal inserted into the PAAm lattice in relation to the dependence of Δn on the AAm concentration and the optical transmittance. SEM micrographs show that birefringent hydrogels present rougher surface when compared to the surface of PAAm hydrogels. For the same AAm concentrations, it was observed that the hydrogels with confined LLC present larger swelling values (Q) when compared to those of PAAm hydrogels. The loss of water by birefringent hydrogels is twofold slower than that of PAAm hydrogels. Hydrogels formed by PAAm and lyotropic liquid crystal synthesized in this work can be potentially used in optical devices.  相似文献   

8.
The static and dynamic mechanical behavior of two double network (DN) hydrogels, alginate/polyacrylamide (PAAm) hybrid hydrogel and sodium poly(2-acrylamido-2-methylpropanesulfonic acid) PNaAMPS/PAAm, is presented to understand the role played by different cross-linked networks on fracture and recovery properties. Although with a smaller modulus, alginate/PAAm hybrid hydrogel had a much higher stretchability, whether with or without notches, in the tensile tests. Continuous step strain measurement by using a strain-controlled parallel-plate rheometer showed that alginate/PAAm can immediately recover its mechanical properties after breakdown, while PNaAMPS/PAAm didn't show mechanical recovery at all.  相似文献   

9.
Three series of semi‐interpenetrating polymer networks, based on crosslinked poly(N‐isopropyl acrylamide) (PNIPA) and 1 wt % nonionic or ionic (cationic and anionic) linear polyacrylamide (PAAm), were synthesized to improve the mechanical properties of PNIPA gels. The effect of the incorporation of linear polymers into responsive networks on the temperature‐induced transition, swelling behavior, and mechanical properties was studied. Polymer networks with four different crosslinking densities were prepared with various molar ratios (25:1 to 100:1) of the monomer (N‐isopropyl acrylamide) to the crosslinker (methylenebisacrylamide). The hydrogels were characterized by the determination of the equilibrium degree of swelling at 25 °C, the compression modulus, and the effective crosslinking density, as well as the ultimate hydrogel properties, such as the tensile strength and elongation at break. The introduction of cationic and anionic linear hydrophilic PAAm into PNIPA networks increased the rate of swelling, whereas the presence of nonionic PAAm diminished it. Transition temperatures were significantly affected by both the crosslinking density and the presence of linear PAAm in the hydrogel networks. Although anionic PAAm had the greatest influence on increasing the transition temperature, the presence of nonionic PAAm caused the highest dimensional change. Semi‐interpenetrating polymer networks reinforced with cationic and nonionic PAAm exhibited higher tensile strengths and elongations at break than PNIPA hydrogels, whereas the presence of anionic PAAm caused a reduction in the mechanical properties. © 2004 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 42: 3987–3999, 2004  相似文献   

10.
The time evolution of ultrasonic velocity and attenuation has been investigated in-situ during the gelation process of polyacrylamide (PAAm) hydrogels. Longitudinal ultrasonic pulses were transmitted through the gel samples and continuously recorded to obtain the magnitude and phase of the waves as a function of time and frequency, enabling the attenuation coefficient, α, and phase velocity, vp, of PAAm gels to be determined. The reaction was characterized by (1) an initial rapid increase in α and vp, and (2) a subsequent reduction after both quantities passed through a peak associated with the exothermic reaction for the PAAm gelation. The square of vp is proportional to the longitudinal modulus of the sample and inversely proportional to the density, and the values of vp for the aged gels were smaller than those before the gelation. The cross-linker concentration dependence was further examined in order to investigate the gelation process accompanied by phase separation.  相似文献   

11.
Excellent radiation resistance is a prerequisite for pressure-sensitive hydrogels to be used in high-energy radiation environments. In this work, tannic acid-modified boron nitride nanosheet(BNNS-TA) is first prepared as the radiation-resistant additive by a facile one-step ball milling of hexagonal boron nitride and tannic acid. Then, polyacrylamide(PAAm)-based pressure-sensitive hydrogel doped with BNNS-TA and Fe3+ions is fabricated. The ternary BNNS-TA/Fe3+/PAAm hydrogel...  相似文献   

12.
Novel interpenetrating networks (IPNs) hydrogels responsive to temperature were prepared in situ by liquid-phase photopolymerization. The first network of the IPNs (poly isopropyl acrylamide) were formed with a special kind of hectorite (Laponite XLS) modified by tetrasodium pyrophosphate as cross-linker and 2-oxogultaric acid as photoinitiator. The samples were subsequently immersed in an acrylamide (AAm) aqueous solution for at least one day for preparing IPNs hydrogels, in which acrylamide aqueous solution containing N,N′-Dimetyl acrylamide (MBAA) as cross-linker and 2-oxogultaric acid as photoinitiator. Then the second networks were in situ formed by introducing ultraviolet light irradiated PNIPAAm gels. The swelling/deswelling behaviors of IPNs hydrogels were measured. Compared with the corresponding nanocomposite PNIPAAm hydroges(NC hydrogels), chemically cross-linked PNIPAAm and PAAm IPNs hydrogels, the results indicate that the new IPN hydrogel has a faster deswelling rate above its LCST (≈32 °C). The effect was explained as being an additional contribution of the PAAm chains in IPN hydrogels, which may act as a water-releasing channel when the hydrophobic aggregation of PNIPA takes place.  相似文献   

13.
Introduction of soft filler in a hard body, which is one of the common toughening methods of hard polymeric materials, was applied for further toughening of robust double network (DN) hydrogels composed of poly(2‐acrylamido‐2‐methylpropanesulfonic acid) gels (PAMPS gels) as the first component and polyacrylamide (PAAm) as the second component. The fracture energy of the DN gels with the void structure (called void‐DN gels) became twice when the volume fraction of void was 1–3 vol % and the void diameter was much larger than the Flory radius of the PAAm chains. Such toughening was induced by wider range of internal fracture of the PAMPS network derived from partial stress concentration near void structure. Considering the mechanical tests and the dynamic light scattering results, it is implied that the absence of the load‐bearing PAAm structure inside the void is important for the toughening. © 2011 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 49: 1246–1254, 2011  相似文献   

14.
Recently, metal coordination has been widely utilized to fabricate high‐performance hydrogels, but conventional metal‐based hydrogels face some drawbacks, such as staining or acid lability. In the present study, a novel kind of colorless Zr(IV)‐crosslinked polyacrylamide/polyanionic cellulose (PAM/PAC) composite hydrogel with unique acid resistance was constructed via acrylamide polymerization in a PAC solution, followed by posttreatment in a zirconium oxychloride (ZrOCl2) solution. The prepared gels were characterized in terms of Fourier transform infrared spectroscopy, scanning electron microscopy, and tensile and compressive mechanics, as well as acid resistance. Inside the gels, the synergistic action of hydrogen bonding and Zr(IV) coordination is responsible for their improved mechanical properties and good energy dissipation ability. One hydrogel with nearly 90 wt % of water content can sustain approximately 5 MPa of compression stress at 90% strain without damage. Both microscopic network structures and macroscopic mechanics demonstrate facile adjustability via changing the PAC dosages in polymerization and/or ZrOCl2 concentrations in posttreatment. Moreover, the gels present unexpected acid resistance due to the strong Zr(IV) coordination with PAC, demonstrating their potential application as hydrogel electrolytes in supercapacitors. The current work provides a new approach to fabricate metal coordination‐based high strength, colorless hydrogels with acid resistance. © 2019 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2019 , 57, 981–991  相似文献   

15.
In this work, the thermotropic liquid crystal MBBA (N-(4-methoxybenzilidene)-4-butylaniline), entrapped on hydrogels, based on cross-linked polyacrylamide (PAAm), was studied. The liquid crystalline phases of system were characterized by polarized optical microscopy (POM), refractive index, optical transmittance, scanning electron microscopy (SEM) and water loss. It was verified the presence of birefringence on hydrogel + liquid crystal. The dynamic of formation of such birefringence finished 40 days after the hydrogel synthesis. The effective birefringence Δn, i.e., the difference on refractive index of polyacrylamide hydrogel to refractive index of hydrogel + liquid crystal (Δn1) and the difference on refractive index of liquid crystal (MBBA) to refractive index of hydrogel + liquid crystal (Δn2) are dependent of content of acrylamide (AAm) and MBBA on hydrogel. The increase on Δn1 and Δn2 with the polyacrylamide content on hydrogel was attributed to decreasing of the mobility liquid crystal inside the hydrogel. Also, an increase on MBBA concentration in the polymeric matrix provides a reduction in the values of optical transmittance in the system. The morphology observed by SEM shows that hydrogel + liquid crystal is more compact that PAAm hydrogels. The presence of MBBA causes an increase in hydrophobicity. The water loss speed is favored by the increase in the amount of MBBA present in the hydrogels.  相似文献   

16.
We present a novel approach to the fabrication of advanced polymeric nanocomposite hydrogels from polyacrylamide (PAAm) by incorporation of graphene‐silver‐polyethylenedioxythiophene‐polystyrene sulfonate (rGO‐Ag‐PEDOT/PSS) by photopolymerization method. Infrared spectroscopy was employed to characterize the structure of the hydrogels. The internal network structure of nanocomposite hydrogels was investigated by scanning electron microscope. Swelling, deswelling, and mechanical properties of the hydrogels were investigated. The compressive strength of nanocomposite hydrogels reaches maximum of 1.71 MPa when the ratio of rGO‐Ag‐PEDOT/PSS to PAAm was 0.3 wt%, which is 1.57 times higher than that of PAAm hydrogels (1.09 MPa). The electrical conductivity of the PAAm‐rGO‐Ag‐PEDOT/PSS hydrogel was found to be 3.91 × 10?5 S cm?1. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

17.
《化学:亚洲杂志》2018,13(15):1962-1971
Recently, supramolecular hydrogels have attracted increasing interest owing to their tunable stability and inherent biocompatibility. However, only few studies have been reported in the literature on self‐healing supramolecular nucleoside hydrogels, compared to self‐healing polymer hydrogels. In this work, we successfully developed a self‐healing supramolecular nucleoside hydrogel obtained by simply mixing equimolar amounts of guanosine (G) and isoguanosine (isoG) in the presence of K+. The gelation properties have been studied systematically by comparing different alkali metal ions as well as mixtures with different ratios of G and isoG. To this end, rheological and phase diagram experiments demonstrated that the co‐gel not only possessed good self‐healing properties and short recovery time (only 20 seconds) but also could be formed at very low concentrations of K+. Furthermore, nuclear magnetic resonance (NMR), powder X‐ray diffraction (PXRD), and circular dichroism (CD) spectroscopy suggested that possible G2isoG2‐quartet structures occurred in this self‐healing supramolecular nucleoside hydrogel. This co‐gel, to some extent, addressed the problem of isoguanosine gels for the applications in vivo, which showed the potential to be a new type of drug delivery system for biomedical applications in the future.  相似文献   

18.
In the present article alginate hydrogels and novel hydrogels based on blends of alginate/N‐succinylchitosan have been realized in water solution at neutral conditions. The gels have been obtained by crosslinking via the internal setting method using calcium carbonate (CaCO3) as calcium ions source. A rheological investigation of both the plain alginate and the alginate/N‐succinylchitosan blend hydrogels has been performed by means of oscillatory dynamic measurements. The effect of the inclusion of different amounts of CaCO3 on the critical deformation (γc) characterizing the limit of the linear viscoelastic regime has been studied for the plain alginate gels. The frequency response in small amplitude oscillatory experiments of the plain alginate gels has been investigated in terms of the storage (G′) and loss (G″) modulus behavior. The dynamic data have been interpreted in terms of the Friedrich and Heymann model. The inclusion of the N‐succinylchitosan, in the range 10–50% w/w, had no effect on the γc values. On the contrary, when the 10% w/w of the N‐succinylchitosan is added to the plain alginate gels, a significant increase in the storage modulus values is recorded for all the systems analyzed. The gelation kinetics has been investigated and the results indicate that the kinetics process can be accelerated increasing the percentage of Ca+2 ions and/or including the N‐succinylchitosan in the plain alginate systems. Finally, the morphological analysis of scaffolds obtained from the hydrogels through freeze‐drying revealed an interconnected porous structure. © 2008 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 46: 1167–1182, 2008  相似文献   

19.
The mechanical strength of double network (DN) gels consisting of highly cross-linked poly(2-acrylamido-2-methylpropanesulfonic acid) (PAMPS) as the first component and linear polyacrylamide (PAAm) as the second component has been investigated by varying the molecular weight of the second polymer PAAm, M(w). The experimental results reveal that, for toughening of the DN gels, (1) M(w) is one of the dominant parameters; (2) there is a critical value of M(w) = 10(6) for a remarkable enhancement; (3) the fracture energy of DN gels with a M(w) larger than 10(6) reaches a value as high as 10(3) J/m(2). By plotting the strength of DN gels (fracture stress sigma and fracture energy G) against a characteristic parameter of c[eta], where c is the average concentration of PAAm in the DN gels and [eta] is the intrinsic viscosity of PAAm, it is found that the dramatic increase in the mechanical strength of the DN gels occurs above the region where linear PAAm chains are entangled with each other. Thus, we conclude that the entanglement between the second component PAAm plays an important role of the toughening mechanism of DN gels. This result supports the heterogeneous model, which predicts the presence of "voids" of the first network PAMPS with a size much larger than the radius of the second polymer PAAm.  相似文献   

20.

Crosslinked CMC‐N/PAAm hydrogel were prepared using electron beam irradiation. The factors affecting the degree of crosslinking and swelling behavior of the prepared copolymer were determined. As the irradiation dose and/or PAAm concentration increase, the gel content increases. Preparation of super‐porous hydrogel was attained by the addition of ammonium carbonate as a gas‐blowing agent during the irradiation process. The surface morphology and pore structure of such a prepared hydrogel were examined using scanning electron microscopy. The ability of the prepared hydrogel to absorb and retain large amount of water and as simulating urine was measured. The results suggested the possible use of CMC‐Na/PAAm hydrogels in the personal care product industry.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号