首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Tungsten oxides were electrochemically deposited from a metastable acidic solution of isopolytungstate on simple glassy carbon electrodes and glassy carbon electrodes coated with a film of a conductive polymer poly(3,4-ethylenedioxythiophene). It was found by the cyclic voltammetry method that the redox capacity of tungsten oxide deposits on the conductive polymer film is noticeably greater than on glassy carbon, which indirectly points to its high dispersion. The morphology of the tungsten oxide deposits was studied using scanning electron microscopy. The tungsten valence state in the composition of surface tungsten oxides was determined by the X-ray electron spectroscopy method.  相似文献   

2.
《Analytical letters》2012,45(5):435-439
Abstract

During a voltammetric study of the suitability of platinum, gold, glassy carbon, tungsten, and tantalum as electrode materials for generating halogens in constant-current coulometry it was found that glassy carbon, tungsten, and tantalum are not suitable. Both platinum and gold electrodes can be used; with platinum the possibility of interference caused by formation of complexes of the electrode metal with halides is smaller than with gold.  相似文献   

3.
The effect of various deposition techniques, electrode materials and posttreatment with tetrabutylammonium and tetrabutylphosphonium salts on the electrochemical behavior and stability of various Prussian blue (PB) modified electrodes, namely PB modified glassy carbon electrodes, silicate‐film supported PB modified glassy carbon electrodes, PB‐doped silicate glassy carbon electrodes, PB modified carbon ceramic electrodes using electrochemical deposition and PB modified carbon ceramic electrodes using chemical deposition is reported. Cyclic voltammetry and amperometric measurements of hydrogen peroxide were performed in a flow injection system while the carrier phosphate buffer (pH 7.0) with a flow rate of 0.8 mL min?1 was propelled into the electrochemical flow through cell housing the PB modified working electrode as well as an Ag|AgCl|0.1 M KCl reference and a Pt auxiliary electrode. The results showed that the deposition procedure, electrode material and posttreatment with additional chemicals can significantly alter the stability and electrochemical behavior of the PB film. Among the studied PB modified electrodes, those based on carbon ceramic electrodes modified with a film of electropolymerized PB showed the best electrochemical stability.  相似文献   

4.
We show that the addition of white dextrin during the electrochemical deposition of platinum nanostructures (nano-Pt) on a glassy carbon electrode (GCE) results in an electrochemically active surface that is much larger than that of platinum microparticles prepared by the same procedure but in the absence of dextrin. The nano-Pt deposits are characterized by scanning electron microscopy (SEM), energy dispersive spectroscopy, and electrochemical methods. The SEM images reveal deposits composed of mainly nanoparticles and short nanorods. The GCE was applied as a novel and cost-effective catalyst for methanol oxidation. The use of nano-Pt improves the electrocatalytic activity and the stability of the electrodes.
Figure
(A) SEM image of the Pt nanostructures. (B) Electrochemical responses of the Pt nanostructures (solid line) and Pt microparticles (line) in 1.4 M CH3OH + 0.5 M H2SO4 solution at υ?=?50 mV s?1. Novel Pt nanostructures were electrodeposited at the surface of glassy carbon electrode in the presence of white dextrin as an additive, which exhibit high electrocatalytic activity towards methanol oxidation due to their highly electrochemically active surface area.  相似文献   

5.
A bifunctional substituted dithienylcyclopentene photochromic switch bearing electropolymerisable methoxystyryl units, which enable immobilization of the photochromic unit on conducting substrates, is reported. The spectroscopic, electrochemical, and photochemical properties of a monomer in solution are compared with those of the polymer formed through oxidative electropolymerization. The electroactive polymer films prepared on gold, platinum, glassy carbon, and indium titanium oxide (ITO) electrodes were characterized by cyclic voltammetry, X-ray photoelectron spectroscopy (XPS), and atomic force microscopy (AFM). The thickness of the films formed is found to be limited to several monolayer equivalents. The photochromic properties and stability of the polymer films have been investigated by UV/vis spectroscopy, electrochemistry, and XPS. Although the films are electrochemically and photochemically stable, their mechanical stability with respect to adhesion to the electrode was found to be sensitive to both the solvent and the electrode material employed, with more apolar solvents, glassy carbon, and ITO electrodes providing good adhesion of the polymer film. The polymer film is formed consistently as a thin film and can be switched both optically and electrochemically between the open and closed state of the photochromic dithienylethene moiety.  相似文献   

6.
UV-vis reflection spectroelectrochemistry has proven to be a very useful multiresponse technique to evaluate the quality of bismuth films obtained by electrochemical deposition on glassy carbon electrodes (GCEs). Bismuth films have recently emerged as a promising and environmental friendly alternative to mercury electrodes for stripping analysis. Spectroelectrochemical measurements, carried out in a flow cell, allowed us to follow in situ the electrodeposition and stripping of bismuth and cadmium. Electrochemical and spectroscopic responses individually have led to successfully quantify the amount of cadmium in test solutions.  相似文献   

7.
A new one-step method is reported for the deposition of hybrid mesoporous thin films on various electrode surfaces (gold, platinum, glassy carbon). Deposition was achieved by spin-coating sol–gel mixtures in the presence of a surfactant template to get mesostructured thin layers on the various conducting substrates. Film formation occurred by evaporation induced self-assembly (EISA) involving the hydrolysis and (co)condensation of silane and/or organosilane precursors on the electrode surface. Extraction of the surfactant from the ordered mesoporous films led to a large increase of mass transport rates into the materials and imparted high accessibility to the organic moieties in case of functionalized mesoporous overlayers. The electrochemical properties of the film-modified electrodes have been studied by cyclic voltammetry (CV), and also via the chemical accumulation of mercury ions prior to their stripping analysis by differential pulse voltammetry (i.e. for thiol-functionalized thin films). Some evidences to support the formation of self-assembled monolayers (SAMs) on electrodes, have been also discussed. The formation of well-adhering mesoporous thin films on solid electrode surfaces is expected to have a high impact on the development of new electrochemical sensors.  相似文献   

8.
《Comptes Rendus Chimie》2019,22(8):557-561
The electrochemical oxidation of benzaldehyde and four hydroxybenzaldehydes was studied on platinum and glassy carbon electrodes in acetonitrile. A considerable difference was observed in electrooxidation performed on platinum and glassy carbon electrodes. All hydroxy derivatives fouled the glassy carbon electrode, but platinum was passivated only by the electrooxidation of 3-hydroxybenzaldehyde, highlighting the crucial role of the position of the substituent relative to the hydroxy group. On the glassy carbon electrode, the formation of the corresponding benzoyl radical could have taken place, which promoted the buildup of polymers on the electrode surface.  相似文献   

9.
纳米碳管由于其独特的物理和化学性能及广阔的应用前景而备受关注,其相关研究涉及到众多领域[1 ̄3]。在电化学分析领域,与其它碳电极材料相比,纳米碳管电极具有较大的电极表面积和较高的电子传递速率,其使用能增大响应电流、降低检出限,是目前电化学分析电极中一个十分引人注目  相似文献   

10.
The electrochemistry of indium species was investigated at glassy carbon, tungsten and nickel electrodes in a basic 1‐ethyl‐3‐methylimidazolium chloride/tetrafluoroborate ionic liquid. Amperometric titration experiments suggest that In(III) chloride is complexed as [InCl5]2? in this ionic liquid. The electrochemical reduction of [InCl5]2? to indium metal is preceded by overpotential driven nucleations. The effective anodic dissolution of indium to indium(III) requires, however, the presence of sufficient chloride ions at the electrode surface. The electrodeposition of indium at glassy carbon and tungsten electrodes proceeds via three‐dimensional instantaneous nucleation with diffusion‐controlled growth of the nuclei. At the nickel electrode, the deposition proceeds via three‐dimensional progressive nucleation with diffusion‐controlled growth of the nuclei. Raising the deposition temperature decreases the average radius of the individual nuclei, r. Scanning electron microscopic and x‐ray diffraction data indicated that bulk crystalline indium electrodeposits could be prepared on nickel substrates within a temperature range between 30 and 120 °C.  相似文献   

11.
Anodic oxidation of tertiary phosphines (tripropyl-, tributyl-, and triphenylphosphine) in the presence of a bicyclic alkene (camphene) on a platinum and a glassy carbon electrodes was studied. For the first time the voltammetric characteristics of the process of camphene anodic oxidation were obtained. The electrochemical reactions with alkyl and aromatic phosphine were found to be dissimilar. The results of preparative electrooxidation of trialkylphosphines showed that in the course of electrolysis the tertiary phosphine cation-radicals generated on the anode enter into two concurrent reactions: (1) with the parent phosphine to form eventually trialkylphosphonium salts and trialkylphosphine oxides presumably as complex compounds and (2) with camphene to form trialkylcamphenylphosphonium salts and probably phosphonium salts with a monocyclic substituent. Preparative electrochemical oxidation of triphenylphosphine in the presence of camphene affords almost exclusively either triphenylphosphine oxide (in the experiment with platinum anode) or the triphenylphosphine oxide complex with perchloric acid (at the electrolysis on a glassy carbon anode).  相似文献   

12.
Abstract

Glassy carbon discs have been coated with silicon in a chemical vapour deposition process to obtain leak-tight electrodes, sealed in glass. Electrodes with coatings thicker than 5μm prove to be leak-tight in contrast with uncoated ones. Silicon-coated electrodes show faster decay of charging current, less noise and decreased background current. Leak-tightness and electron microscope information correlate well with the electrochemical data. All results can be ascribed to the absence of a void between glassy carbon and glass at Si-coated electrodes. By silicon coating, signal-to-noise ratios are improved with a factor of about 5, as is demonstrated for catecholamines and metabolites in liquid chromatography with electrochemical detection.  相似文献   

13.
The present work describes the synthesis of platinum nanoparticles followed by their electrophoretic deposition onto transparent fluorine-doped tin oxide electrodes. The nano-Pt-modified electrodes were characterized by voltammetric studies in acidic solutions showing a great electrocatalytic behavior towards H+ reduction being very interesting for fuel cell applications. Morphological characterization was performed by atomic force microscopy on different modified electrodes showing a very rough surface which can be tuned by means of time of deposition. Also, nickel hydroxide thin films were galvanostatically grown onto these electrodes showing an interesting electrochemical behavior as sharper peaks, indicating a faster ionic exchange from the electrolyte to the film.  相似文献   

14.
Appropriate conditions were selected to favour the non-destructive electroreductive deposition of [(HOAs)4Mo12O46]4− on solid electrode surfaces. During the first several cyclic voltammetry runs on glassy carbon electrodes, the surface activity of this tetrameric complex anion was found to depend on the nature of the supporting electrolyte anion. Cyclic voltammetry, electrochemical quartz crystal microbalance (EQCM) and atomic force microscopy (AFM) results converge to indicate that stable and porous films are formed, which should be suitable for electrocatalysis studies on a molecular basis.  相似文献   

15.
Hydrodynamic voltammetry employing empirically determined mass transport coefficients is used to determine heterogeneous rate constants and transport coefficients for the ferricyanide/ferrocyanide system in 0.1 M phosphate buffer and other supporting electrolytes with turbulent tubular and rotated disk electrodes of platinum, gold, glassy carbon, carbon film, and boron carbide. Different kinetic parameters are obtained at the various electrode materials. For the platinum, gold, and boron carbide electrodes, the magnitudes of the rate parameters depend on scan direction. The nature of this hysteresis varies with the electrode material and is explained in terms of adsorbed oxide and ionic layers or other phenomena not described by simple double layer theory.  相似文献   

16.
磷钨钴和磷钨镍杂多酸化学修饰电极的研究   总被引:3,自引:0,他引:3  
杂多酸由于组成和结构上的特点,在电化学和电分析化学领域有着广泛应用[1,2]。迄今为止,有关磷钨钴和磷钨镍三元杂多酸化学修饰电极还未见报道。本文按文献方法[3]合成了磷钨钴(H3PW11CoO40·xH2O)和磷钨镍(H3PW11NiO40·xH2O)杂多酸,分别以H3PW12O40·xH2O、H3PW11CoO40·xH2O和H3PW11NiO40·xH2O杂多酸(以下简写为H3PW11MO40·xH2O,其中M代表W,Co和Ni)为修饰剂,采用电化学方法在导电基体玻碳(GC)电极上制备了H3PW11MO40/GC膜修饰电极,制备过程简便、快速。对膜电极的…  相似文献   

17.
Electrosynthesis of poly(brilliant cresyl blue) in aqueous solution in the presence of Keggin-type polyoxotungstates, [SiW11Fe(H2O)O39]5? or [SiW11Co(H2O)O39]6?, was used to prepare modified glassy carbon electrodes. The deposited hybrid organic/inorganic films were studied and characterised by cyclic voltammetry and electrochemical impedance spectroscopy. Cyclic voltammetry showed that the electrochemical features of the polyoxoanions were maintained after immobilisation, with the first tungsten reduction peak involving the uptake of protons from the solution. The chemically modified electrodes were stable, and their preparation was easy to perform. The results provide valuable information for exploring future applications of these films in electrochemical sensors or electrocatalysis.  相似文献   

18.
In the domains of chemical catalysis and analytical chemistry, the modification of metal electrodes by the deposition of multilayers was developed about twenty years ago. The purpose of our work was to compare the behavior of an electrode prepared with a substituted polyaniline with that of electrodes regularly used in analytical chemistry: platinum, platinized platinum and glassy carbon. We initially present results obtained with poly-2,5-dimethoxyaniline (PDMAn) on two classic systems: the couple Fe(CN)63–/Fe(CN)64– and the couple O2/OH. The first example is often studied during training in electrochemistry because of the good results generally obtained. Levich’s equation is effectively well verified. On the other hand, reduction of oxygen and oxidation of OH ions are always limited by the rate of the electron transfer reactions. It seems to us that the study of the behavior of these two systems with platinum electrodes covered with PDMAn, platinized or not, could be interesting. The oxidation of isopropanol in a weakly acid medium was also investigated. In the field of analytical chemistry, a more detailed study is mandatory before deciding on the possibility of using electrodes modified with films of substituted polyaniline. An electrode, which would not be platinized, does not seem useful; the use of electrodes prepared with platinized polymers deposited on substrates less expensive than platinum, (glassy carbon for example), may be more interesting. It seems that H2O2 formation over a wide domain of potential would be the best result for oxidations and new experiments will be investigated.  相似文献   

19.
Sadik Cogal 《Analytical letters》2018,51(11):1666-1679
Poly(3,4-ethylenedioxythiophene) was deposited on a reduced graphene oxide-decorated glassy carbon electrode through an electrochemical polymerization. The resulting glassy carbon electrode-reduced graphene oxide-poly(3,4-ethylenedioxythiophene) electrode was applied as an electrochemical biosensor for the determination of dopamine in the presence of ascorbic acid and uric acid. The material deposited on glassy carbon electrode was investigated in terms of morphology and structural analysis. The comparison of electrochemical behavior of the glassy carbon electrode-reduced graphene oxide-poly(3,4-ethylenedioxythiophene) electrode with the glassy carbon electrode-graphene oxide, glassy carbon electrode-reduced graphene oxide, and glassy carbon electrode-poly(3,4-ethylenedioxythiophene) electrodes exhibited high electrocatalytic activity for dopamine detection. Electrochemical kinetic parameters of glassy carbon electrode-reduced graphene oxide-poly(3,4-ethylenedioxythiophene), including the charge transfer coefficient α (0.49) and electron transfer rate constant ks (1.04), were determined and discussed. The glassy carbon electrode-reduced graphene oxide-poly(3,4-ethylenedioxythiophene) electrode was studied for the determination of dopamine by differential pulse voltammetry and exhibited a linear range from 19.6 to 122.8?µM with a sensitivity of 3.27?µA?µM?1?cm?2 and a detection limit of 1.92?µM. The developed biosensor exhibited good selectivity toward dopamine with high reproducibility and stability.  相似文献   

20.
《Electroanalysis》2005,17(10):847-856
The electrochemistry of water‐soluble manganese porphyrins (Mn(4‐TMPyP)) has been studied as an electrochemically‐active film on double‐stranded deoxyribonucleic acid (dsDNA) modified electrodes in solutions at various pH. An electrochemical quartz crystal microbalance and cyclic voltammetry were used to study the in situ deposition of DNA on gold disk electrodes, and Mn(4‐TMPyP) (manganese meso‐tetrakis‐(N‐methyl‐4‐pyridyl)porphyrin) deposition on DNA film modified electrodes. MnII(4‐TMPyP) (the reduced form) is more easily deposited on a DNA film than MnIII(4‐TMPyP) (the oxidized form). Electrodeposition of Mn(4‐TMPyP) can be performed in strong basic aqueous solutions, and shows two redox couples with electrochemically active voltammograms. The films can also be produced on glassy carbon, platinum, gold, and transparent semiconductor tin (IV) oxide electrodes. The Mn(4‐TMPyP)/DNA film was electrocatalytically oxidative for hydrazine, hydroxylamine, and SO in a basic aqueous solution through a Mn(IV) species. The electrocatalytic efficiency of MnIV(O)(4‐TMPyP) was observed to be greater than (OH)MnIV(O)(4‐TMPyP). Electrocatalytic oxidation by a Mn(4‐TMPyP) film as a catalyst for hydrazine oxidation is also discussed. This shows a new anodic peak current in the second segment after the positive scan during electrocatalytic oxidation, and is pH dependent.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号