首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Li4Ti5O12/(Ag+C)电极材料的固相合成及电化学性能   总被引:1,自引:0,他引:1  
以Li2CO3,TiO2为原料,葡萄糖为碳源,采用固相煅烧工艺合成了亚微米级的Li4Ti5O12/C复合负极材料。并将之与AgNO3复合,采用固相方法制备出了Ag表面修饰的Li4Ti5O12/(Ag+C)复合材料。采用XRD、SEM和TEM测试方法对材料的微结构进行了表征。结果表明,C的存在对Ag单质在Li4Ti5O12/C颗粒表面的大量形成起到了积极的促进作用,从而很大程度地提高了Li4Ti5O12/C的电导率,因此有效地改善了其电化学性能。在1C倍率下,Li4Ti5O12/(Ag+C)复合材料的首次放电容量达到了164 mAh·g-1。  相似文献   

2.
The phase relations of the system Cr2O3TiO2 were determined at temperatures between 1400 and 1765°C in air. Discrete homologous series of Cr2Tin?2O2n?1, with n = 6, 7, 8, were found to be stable as single phases in the range of certain temperatures, while a continuous solid solution existed in the composition of n > 8 below 1425°C. This presence and its stable region of a new compound of Cr2TiO5 corresponding to n = 3 are revealed in the present paper. Cr2Ti2O7, the so-called E phase, existed in wide homogeneity range, corresponding to the composition of approximately 3 < n < 5. High-temperature phases (called n and n′ phases in the present work) existed above 1425°C and seemed to be closely related to each other from the viewpoint of the structure except that some X-ray diffraction lines of n phase were strongly diffused. Both rutile and chromia had limited solid solubilities. In the present paper, phase relations between Cr2O3 and TiO2 are summarized in a phase diagram.  相似文献   

3.
New phases which arise from partial substitution of Ti4+ by Cr3+ and Li+ of the compound La2/3TiO3 have been obtained, giving rise to the series La1.33LixCrxTi2−xO6 (x=0.66, 0.55 and 0.44). These phases adopt a perovskite-type structure as deduced from their structural characterization. Rietveld's analyses of neutron diffraction data show that it is orthorhombic (S.G. Pbnm) with ordered domains. Conductivity has been examined by complex impedance spectroscopy and it increases with increasing lithium and chromium content. These materials behave as mixed conductors with low activation energies. Magnetic susceptibility variation with temperature shows antiferromagnetic interactions at the lowest temperatures.  相似文献   

4.
将LiNO3和Ti(OC4H9)4填填充在有序介孔碳CMK-3 孔道中, 然后烧结合成了Li4Ti5O12/CMK-3复合材料. 利用扫描电子显微镜(SEM)、透射电子显微镜(TEM)和X射线衍射(XRD)对其结构和微观形貌进行了表征. 利用差热-热重分析(TG-DTA)测试复合材料中Li4Ti5O12的含量. 利用充放电测试、循环伏安和电化学阻抗技术考察了复合材料作为锂离子电池负极材料的性能. 发现Li4Ti5O12分布在CMK-3孔道中及其周围, 复合材料的高倍率充放电性能显著优于商品Li4Ti5O12, 复合材料中Li4Ti5O12的比容量明显高于除去CMK-3的样品(在1C倍率时比容量为117.8 mAh·g-1), 其0.5C、1C和5C倍率的放电比容量分别为160、143 和131 mAh·g-1, 库仑效率接近100%, 5C倍率时循环100次的容量损失率只有0.62%. 本研究结果表明CMK-3明显提高了Li4Ti5O12的高倍率充放电性能, 可能是CMK-3特殊的孔道结构和良好的导电性减小了Li4Ti5O12的粒径并提高了其电导率.  相似文献   

5.
Nanosized Li4Ti5O12 powders are synthesized by a polymerization-based method using ti-tanium butoxide and lithium nitrate as precursors and furfuryl alcohol as a polymerizable solvent. The prepared samples are characterized by X-ray diffraction, scanning electron mi-croscopy, transmission electron microscopy and Braunauer-Emmett-Teller (BET) analysis. The electrochemical performances of these Li4Ti5O12 powders are also studied. The effect of different surfactants including citric acid, polyvinylpyrrolidone, and cetyltrimethyl am-monium bromide on the structure and properties is also investigated. It is found that pure spinel phase of Li4Ti5O12 is obtained at an annealing temperature of 700 oC or higher. The use of surfactants can improve the powder morphology of nanosized particles with less ag-glomeration. With suitable annealing temperature and the addition of surfactant, Li4Ti5O12 powders with high BET surface area and favorable electrochemical performance can be ob-tained.  相似文献   

6.
In this paper, studies on various physical properties, viz., dielectric properties (dielectric constant, loss tan δ, a.c. conductivity σ) over a wide range of frequency and temperature, optical absorption, ESR at liquid nitrogen temperature and magnetic susceptibility at room temperature of Li2O-CaF2-P2O5: Cr2O3 glass ceramics, have been reported. The optical absorption, ESR and magnetic susceptibility studies indicate that the chromium ions exist in Cr5+, Cr4+ and Cr6+ states in addition to Cr3+ state in these samples. The dielectric constant and loss variation with the concentration of Cr2O3 have been explained on the basis of space charge polarization mechanism. The dielectric relaxation effects exhibited by these samples have been analysed by a graphical method and the spreading of dielectric relaxation has been established. The a.c. conductivity in the high-temperature region seems to be connected both with electronic and ionic movements.  相似文献   

7.
Compounds Ce2TiO5, Ce2Ti2O7, and Ce4Ti9O24 were prepared by heating appropriate mixtures of solids containing Ce4+ and Ti3+ or Ti which were placed in a platinum-silica-ampoule combination at T = 1250°C (3d) under vacuum. The new compounds were characterized by powder patterns. We obtained Ce2TiO5 which is isotypic to La2TiO5 and crystallizes in the Y2TiO5-type (space group Pnma) with a = 10.877(6) Å, b = 3.893(1) Å, c = 11.389(8) Å, Z = 4. Ce2Ti2O7 is isotypic to La2Ti2O7 and crystallizes in the monoclinic Ca2Nb2O7 type (space group P 21) with a = 7.776(6) Å, b = 5.515(4) Å, c = 12.999(6) Å, β = 98.36(5), Z = 4. The compound Ce4Ti9O24 crystallizes orthorhombic with a = 14.082(4) Å, b = 35.419(8) Å, c = 14.516(4) Å, Z = 16. The new cerium titanate Ce4Ti9O24 is isotypic to Nd4Ti9O24 (space group Fddd (No. 70)) which represents a novel type of structure.  相似文献   

8.
LiMn2O4表面包覆Li4Ti5O12的制备及倍率特性   总被引:1,自引:0,他引:1       下载免费PDF全文
采用固相法合成了尖晶石型LiMn2O4,并通过溶胶-凝胶法制备了不同物质的量的百分比含量Li4Ti5O12包覆的正极材料。X-射线衍射和扫描电镜结果表明,Li4Ti5O12微粒包覆在LiMn2O4的表面没有产生晶体结构的变化。实验电池在室温下,以1C,2C和5C倍率作充放电循环测试;结果表明,与未包覆的LiMn2O4相比,表面包覆Li4Ti5O12微粒的正极材料在高倍率下具有更好的循环稳定性。  相似文献   

9.
《中国化学快报》2022,33(11):4776-4780
Zn2Ti3O8, as a new type of anode material for lithium-ion batteries, is attracting enormous attention because of its low cost and excellent safety. Though decent capacities have been reported, the electrochemical reaction mechanism of Zn2Ti3O8 has rarely been studied. In this work, a porous Zn2Ti3O8 anode with considerably high capacity (421 mAh/g at 100 mA/g and 209 mAh/g at 5000 mA/g after 1500 cycles) was reported, which is even higher than ever reported titanium-based anodes materials including Li4Ti5O12, TiO2 and Li2ZnTi3O8. Here, for the first time, the accurate theoretical capacity of Zn2Ti3O8 was confirmed to be 266.4 mAh/g. It was also found that both intercalation reaction and pseudocapacitance contribute to the actual capacity of Zn2Ti3O8, making it possibly higher than the theoretical value. Most importantly, the porous structure of Zn2Ti3O8 not only promotes the intercalation reaction, but also induces high pseudocapacitance capacity (225.4 mAh/g), which boosts the reversible capacity. Therefore, it is the outstanding pseudocapacitance capacity of porous Zn2Ti3O8 that accounts for high actual capacity exceeding the theoretical one. This work elucidates the superiorities of porous structure and provides an example in designing high-performance electrodes for lithium-ion batteries.  相似文献   

10.
The carbon coated nanoflower-like Li4Ti5O12/C composites were prepared via hydrothermal method followed by surface modification using sucrose or polyvinylidene fluoride (PVDF) as carbon sources. X-ray diffraction, SEM, TEM, Raman spectroscopy, TGA, and the electrochemical measurements were used for the materials characterization. Such modification leads to the formation of a high-conductive carbon coating. In the case of polyvinylidene fluoride use, fluorination of Li4Ti5O12 surface takes place also. As a result, electrochemical performance of the obtained composites is improved. In the potential range of 1–3 V, Li4Ti5O12, Li4Ti5O12/CPVDF, and Li4Ti5O12/Csucrose exhibit, respectively, the discharge capacities of 142.5, 154.3, and 170.4 mAh/g at a current of 20 mA/g and 57.2, 82.1, and 89.3mAh/g at a current of 3200 mA/g. When cycled in a potential range of 0.01–3 V, the discharge capacity of Li4Ti5O12/CPVDF increases up to 252 mAh/g at 20 mA/g.  相似文献   

11.
The compound Cr2TiO5 could be synthesized as a stoichiometric single phase above 1660°C in air. Application of selected area electron diffraction, high resolution electron microscopy and powder X-ray diffraction studies showed that Cr2TiO5 is isomorphous with CrFeTiO5, with V3O5 type structure. It is monoclinic, a = 7.020(1)Å, b = 5.025(1)Å, c = 9.945(2)Å and β = 111.43(2)°. It was found that Cr2TiO5 is unstable relative to a mixture of Cr2O3 (ss) and a so-called “E” phase, below 1660°C.  相似文献   

12.
Reduction of the titanium-niobium oxides follows a common pattern. TiO2 is eliminated, to form a new phase richer in titanium than the original compound, and Nb(iv) replaces Ti(iv) in the original block structure, which is thereby enriched in niobium. With TiNb2O7, the second phase is a TiO2NbO2 solid solution, with the rutile structure, initially with a high titanium content, in equilibrium with a solid solution of composition Me3O7, isostructural with TiNb2O7. At log pO2 (atm) about ?9.0 this reaches the limiting composition Ti0.72Nb2.28O7, in equilibrium with Ti0.56Nb0.44O2. The Me3O7 block structure then transforms into the Me12O29 block structure (Ti2Nb10O29Nb12O29 solid solution), which rapidly increases in niobium content as reduction continues. Reduction of Ti2Nb10O29 at oxygen fugacities above log pO2 (atm) = ?9.0 forms the Me3O7 phase as the titanium-rich phase. At log pO2 = ?9.0, and a composition about Ti1.6Nb10.4O29, the rutile solid solution takes over as second phase. The niobium/titanium ratio in both phases rises as reduction proceeds, and the last vestiges of the Me12O29 phase, in equilibrium with the final product, Ti0.17Nb0.67O2, are almost denuded of titanium.  相似文献   

13.
The ferroelectric ceramics of Bi4Ti3O12, SrBi4Ti4O15, and lanthanum-doped Bi4Ti3O12-SrBi4Ti4O15 were synthesized, and their Raman spectra were investigated. La-doping resulted in the enlargement of remnant polarization of Bi4Ti3O12-SrBi4Ti4O15. The structure of the Bi2O2 layers and TiO6 octahedra of the intergrowth was found to be different from those of Bi4Ti3O12 and SrBi4Ti4O15. La3+ ions exhibit pronounced selectivity for the occupation of A site as La content is lower than 0.50, and tend to be incorporated into Bi2O2 layers when the La content is higher than 0.50. Lanthanum substitution brings about the structural phase transition in Bi4Ti3O12-SrBi4Ti4O15. The variation of ferroelectric property may be attributed to combined contribution from the decreasing of the oxygen vacancies, the relaxation of the lattice distortion, the destroying of the insulation and the space charge compensation effects of the Bi2O2 slabs.  相似文献   

14.
The phase equilibria in the V2O3Ti2O3TiO2 system have been determined at 1473°K by the quench method, using both sealed tubes and controlled gaseous buffers. For the latter, CO2H2 mixtures were used to vary the oxygen fugacity between 10?10.50 and 10?16.73 atm. Under these conditions the equilibrium phases are: a sesquioxide solid solution between V2O3 and Ti2O3 with complete solid solubility and an upper stoichiometry limit of (V, Ti)2O3.02; an M3O5 series which has the V3O5 type structure between V2TiO5 and V0.69Ti2.31O5 and the monoclinic pseudobrookite structure between V0.42Ti2.58O5 and Ti3O5; series of Magneli phases, V2Tin?2O2n?1TinO2n?1, n = 4–8; and reduced rutile phases (V, Ti)O2?x, where the lower limit for x is a function of the V(V + Ti) ratio. The extent of the different solid solution areas and the location of the oxygen isobars have been determined.  相似文献   

15.
Li4Ti5O12/(Cu+C)复合材料的制备及电化学性能   总被引:1,自引:0,他引:1  
以Li4Ti5O12,Cu(CH3COO)2·H2O和C6H12O6为前驱体,化学沉积与热分解结合合成锂离子电池负极材料Li4Ti5O12/(Cu+C)。采用X-射线衍射(XRD)、扫描电子显微镜(SEM)、恒流充放电、循环伏安和电化学阻抗方法表征样品的结构、形貌和电化学性能。结果表明,Li4Ti5O12表面包覆的Cu与C提高了Li4Ti5O12电极材料的导电率,其循环性能和倍率性能得到有效地改善。在0.5C、1C和3C倍率下,经过50次充放电循环,放电比容量分别为168.2、160、140.6 mAh·g-1,其容量保持率分别为88.7%、84.4%、71.2%。电化学阻抗测试表明,表面包覆的Cu与C使其电荷转移阻抗大幅度减少。  相似文献   

16.
The crystal structures of three lithium titanates by neutron diffraction powder profile analysis were determined. The tetragonal anatase form of TiO2 becomes orthorhombic on ambient-temperature lithium insertion to Li0.5TiO2 due to the formation of TiTi bonds. The lithium partially occupies the highly distorted octahedral interstices in the anatase framework in fivefold-coordination with oxygen. Cubic LiTi2O4 formed by heating Li0.5TiO2 anatase has a normal spinel structure with Li in the tetrahedral sites. In Li2Ti2O4 formed by reacting LiTi2O4 spinel with n-BuLi at ambient temperature, the titanium remains in the spinel positions but the lithium is displaced, filling all the available octahedral sites.  相似文献   

17.
Phase relations and microstructures in the TiO2-rich part of the TiO2Ga2O3 pseudobinary system have been determined at temperatures between 1373 and 1623°K using X-ray diffraction and electron and optical microscopy. The phases occurring in the system are TiO2 (rutile), β-Ga2O3, a series of oxides Ga4Tim?4O2m?2 (m odd) which exist above 1463°K, and Ga2TiO5, which exists above 1598°K. The width of the phase region occupied by the Ga4Tim?4O2m?2 phases varies with temperature. At 1473°K it is narrow, and has limits of Ga4Ti25O56 to Ga4Ti21O48 while at higher temperatures it broadens to limits of from Ga4Ti27O60 to Ga4Ti11O28 at 1623°K. These phases are often disordered and crystals frequently contain partially ordered intergrowths of oxides with various values of m. On the TiO2-rich side of the phase region there is a continuous change in texture from rutile to the end members of the Ga4Tim?4O2m?2 structures. The findings are summarized on a phase diagram.  相似文献   

18.
Single crystals of the oxidephosphates TiIIITiIV3O3(PO4)3 (black), CrIII4TiIV27O24(PO4)24 (red-brown, transparent), and FeIII4TiIV27O24(PO4)24 (brown) with edge-lengths up to 0.3 mm were grown by chemical vapour transport. The crystal structures of these orthorhombic members (space group F2dd ) of the lazulite/lipscombite structure family were refined from single-crystal data [TiIIITiIV3O3(PO4)3: Z=24, a=7.3261(9) Å, b=22.166(5) Å, c=39.239(8) Å, R1=0.029, wR2=0.084, 6055 independent reflections, 301 variables; CrIII4TiIV27O24(PO4)24: Z=1, a=7.419(3) Å, b=21.640(5) Å, c=13.057(4) Å, R1=0.037, wR2=0.097, 1524 independent reflections, 111 variables; FeIII4TiIV27O24(PO4)24: Z=1, a=7.4001(9) Å, b=21.7503(2) Å, c=12.775(3) Å, R1=0.049, wR2=0.140, 1240 independent reflections, 112 variables). For TiIIITiIVO3(PO4)3 a well-ordered structure built from dimers [TiIII,IV2O9] and [TiIV,IV2O9] and phosphate tetrahedra is found. The metal sites in the crystal structures of Cr4Ti27O24(PO4)24 and Fe4Ti27O24(PO4)24, consisting of dimers [MIIITiIVO9] and [TiIV,IV2O9], monomeric [TiIVO6] octahedra, and phosphate tetrahedra, are heavily disordered. Site disorder, leading to partial occupancy of all octahedral voids of the parent lipscombite/lazulite structure, as well as splitting of the metal positions is observed. According to Guinier photographs TiIII4TiIV27O24(PO4)24 (a=7.418(2) Å, b=21.933(6) Å, c=12.948(7) Å) is isotypic to the oxidephosphates MIII4TiIV27O24(PO4)24 (MIII: Cr, Fe). The UV/vis spectrum of Cr4Ti27O24(PO4)24 reveals a rather small ligand-field splitting Δo=14,370 cm−1 and a very low nephelauxetic ratio β=0.72 for the chromophores [CrIIIO6] within the dimers [CrIIITiIVO9].  相似文献   

19.
锂离子电池负极材料Li_(4-x)K_xTi_5O_(12)结构和电化学性能   总被引:1,自引:0,他引:1  
采用固相反应的方法制备了尖晶石型Li4Ti5O12和K掺杂Li4-xKxTi5O12(x=0.02,0.04,0.06)。通过XRD、SEM、BET等对制备材料进行了分析。结果表明,K掺杂没有影响立方尖晶石型Li4Ti5O12的合成,同时也没有改变Li4Ti5O12的电化学反应过程。K掺杂Li4-xKxTi5O12具有比Li4Ti5O12小的颗粒粒径和比Li4Ti5O12大的比表面积、孔容积。适量的K掺杂能够明显改善Li4Ti5O12的电化学性能,尤其是倍率性能,但是过多的K掺杂却不利于材料电化学性能的提高。研究表明,Li3.96K0.04Ti5O12体现了相对较好的倍率性能和循环稳定性。0.5C下,首次放电比容量为161mAh·g-1,3.0和5.0C下,容量保持分别为138和121mAh·g-1。3.0C下,200次循环后容量保持为137mAh·g-1。  相似文献   

20.
Subsolidus phase relations of ternary oxide systems containing divalent Fe, Mg, or Ni, trivalent Al, Cr, or Fe, and tetravalent Ti are characterized by solid solutions at metal/oxygen ratios 34, 23, and 35. At low temperatures only compounds with cubic or hexagonal close-packed oxygen and uniform oxygen coordination remain stable in the crystal structures NaCl, spinel, ilmenite-α-Al2O3, TiO2. The pseudobrookite phases FeTi2O5, MgTi2O5, Al2TiO5, Fe2TiO5, the V3O5 structure phase Cr2TiO5, and the Andersson phases Cr2Tin?2O2n?1 (n = 4,6,7,8,9) decompose. Additional phases with close-packed oxygen as predicted by a simple structure model for metal/oxygen ratios 712, 56, and 1112 do not form but presumably are important for nonstoichiometric solid solutions. Most differences between systems containing transition metals and the MgOAl2O3TiO2 system can be attributed to crystal field effects.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号