首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Ni/Pt(111) bimetallic surfaces: unique chemistry at monolayer ni coverage.   总被引:1,自引:0,他引:1  
We have utilized the dehydrogenation and hydrogenation of cyclohexene as probe reactions to compare the chemical reactivity of Ni overlayers that are grown epitaxially on a Pt(111) surface. The reaction pathways of cyclohexene were investigated using temperature-programmed desorption, high-resolution electron energy loss (HREELS), and near edge X-ray absorption fine structure (NEXAFS) spectroscopy. Our results provide conclusive spectroscopic evidence that the adsorption and subsequent reactions of cyclohexene are unique on the monolayer Ni surface as compared to those on the clean Pt(111) surface or the thick Ni(111) film. HREELS and NEXAFS studies show that cyclohexene is weakly pi-bonded on monolayer Ni/Pt(111) but di-sigma-bonded to Pt(111) and Ni(111). In addition, a new hydrogenation pathway is detected on the monolayer Ni surface at temperatures as low as 245 K. By exposing the monolayer Ni/Pt(111) surface to D2 prior to the adsorption of cyclohexene, the total yield of the normal and deuterated cyclohexanes increases by approximately 5-fold. Furthermore, the reaction pathway for the complete decomposition of cyclohexene to atomic carbon and hydrogen, which has a selectivity of 69% on the thick Ni(111) film, is nearly negligible (<2%) on the monolayer Ni surface. Overall, the unique chemistry of the monolayer Ni/Pt(111) surface can be explained by the weaker interaction between adsorbates and the monolayer Ni film. These results also point out the possibility of manipulating the chemical properties of metals by controlling the overlayer thickness.  相似文献   

2.
The dehydrogenation and decarbonylation of ethylene glycol and ethanol were studied using temperature programmed desorption (TPD) on Pt(111) and Ni/Pt(111) bimetallic surfaces, as probe reactions for the reforming of oxygenates for the production of H2 for fuel cells. Ethylene glycol reacted via dehydrogenation to form CO and H2, corresponding to the desired reforming reaction, and via total decomposition to produce C(ad), O(ad), and H2. Ethanol reacted by three reaction pathways, dehydrogenation, decarbonylation, and total decomposition, producing CO, H2, CH4, C(ad), and O(ad). Surfaces prepared by deposition of a monolayer of Ni on Pt(111) at 300 K, designated Ni-Pt-Pt(111), displayed increased reforming activity compared to Pt(111), subsurface monolayer Pt-Ni-Pt(111), and thick Ni/Pt(111). Reforming activity was correlated with the d-band center of the surfaces and displayed a linear trend for both ethylene glycol and ethanol, with activity increasing as the surface d-band center moved closer to the Fermi level. This trend was opposite to that previously observed for hydrogenation reactions, where increased activity occurred on subsurface monolayers as the d-band center shifted away from the Fermi level. Extrapolation of the correlation between activity and the surface d-band center of bimetallic systems may provide useful predictions for the selection and rational design of bimetallic catalysts for the reforming of oxygenates.  相似文献   

3.
A density-functional theory(DFT)method has been conducted to systematically investigate the adsorption of CHx(x=0~4)as well as the dissociation of CHx(x=1~4)on(111)facets of gold-alloyed Ni surface.The results have been compared with those obtained on pure Ni(111)surface.It shows that the adsorption energies of CHx(x=1~3)are lower,and the reaction barriers of CH4 dissociation are higher in the first and the fourth steps on gold-alloyed Ni(111)compared with those on pure Ni(111).In particular,the rate-determining step for CH4 dissociation is considered as the first step of dehydrogenation on gold-alloyed Ni(111),while it is the fourth step of dehydrogenation on pure Ni(111).Furthermore,the activation barrier in rate-determining step is higher by 0.41 eV on gold-alloyed Ni(111)than that on pure Ni(111).From above results,it can be concluded that carbon is not easy to form on gold-alloyed Ni(111)compared with that on pure Ni(111).  相似文献   

4.
The adsorption behavior of ethylene on Ni(100) at a variety of temperatures has been studied using temperature programmed desorption, and X-ray and UV photoemission. The adsorption of ethylene at 98 K results in molecular adsorption with a saturation C/Ni ratio of 0.76. Heating this surface to any temperature between 213 and 683 K reduces the C/Ni ratio to 0.5. Exposure to ethylene at 300 K leads to decomposition producing surface carbide, adsorbed hydrogen atoms and an adsorbed CxH2x species. A comparison with other work on Ni(111) indicates that ethylene adsorption processes are structure sensitive.  相似文献   

5.
Chemical properties of epitaxially grown bimetallic layers may deviate substantially from the behavior of their constituents. Strain in conjunction with electronic effects due to the nearby interface represent the dominant contribution to this modification. One of the simplest surface processes to characterize reactivity of these substrates is the dissociative adsorption of an incoming homo-nuclear diatomic molecule. In this study, the adsorption of O(2) on various epitaxially grown Pt films on Ru(0001) has been investigated using infrared absorption spectroscopy and thermal desorption spectroscopy. Pt/Ru(0001) has been chosen as a model system to analyze the individual influences of lateral strain and of the residual substrate interaction on the energetics of a dissociative adsorption system. It is found that adsorption and dissociative sticking depends dramatically on Pt film thickness. Even though oxygen adsorption proceeds in a straightforward manner on Pt(111) and Ru(0001), molecular chemisorption of oxygen on Pt/Ru(0001) is entirely suppressed for the Pt/Ru(0001) monolayer. For two Pt layers chemisorbed molecular oxygen on Pt terraces is produced, albeit at a very slow rate; however, no (thermally induced) dissociation occurs. Only for Pt layer thicknesses N(Pt) ≥ 3 sticking gradually speeds up and annealing leads to dissociation of O(2), thereby approaching the behavior for oxygen adsorption on genuine Pt(111). For Pt monolayer films a novel state of chemisorbed O(2), most likely located at step edges of Pt monolayer islands is identified. This state is readily populated which precludes an activation barrier towards adsorption, in contrast to adsorption on terrace sites of the Pt/Ru(0001) monolayer.  相似文献   

6.
采用密度泛函理论(DFT)中广义梯度近似(GGA)方法, 对Pt原子与γ-Al2O3(001)面的相互作用及迁移性能进行了研究. 分析了各种可能吸附位及吸附构型的松弛和变形现象, 吸附能和迁移能垒的计算结果表明: Pt团簇能够稳定吸附在该表面. Pt原子在表面O位的吸附能明显较高, 这主要是由Pt向基底O原子转移了电子所致. 电荷布居分析表明, Pt原子显电正性, Pt和Al原子之间存在排斥作用, 导致与Al原子产生较弱相互作用. 计算的平均吸附能大小依赖于Pt团簇的大小和形状, 总体趋势是随着Pt原子数增多, 吸附能降低. Pt原子在γ-Al2O3(001)表面迁移过程所需克服的迁移能垒最高值为0.51 eV. 随着吸附的Pt原子数增多,更倾向于形成Pt团簇. 因此, Pt原子在γ-Al2O3(001)表面的吸附演变不可能形成光滑、均匀平铺的吸附构型, 而在一定条件下容易出现团聚.  相似文献   

7.
采用密度泛函理论,对Pt(111)和Pt3Ni(111)表面上CO和O的单独吸附、共吸附以及CO的氧化反应进行了系统的研究. 结果表明, Pt3Ni(111)表面上CO的吸附弱于Pt(111)表面, O的吸附明显强于Pt(111)表面. 两个表面表现出相似的CO催化氧化活性. 表面Ni的存在不但稳定了O的吸附,同时也降低了过渡态O的能量.  相似文献   

8.
When Cu(110), Ni(l 10), Ag(110) surfaces are exposed to O2 at room temperature, one dimensional metal-oxygen strings grow in the < 001 > direction of the (110) surfaces. A similar phenomenon occurs in the adsorption of H2 on Ni( 110) surface at room temperature, where the one dimensional strings grow along the < 110 > direction. These phenomena are undoubtedly different from the adsorption induced reconstruction but are explained by the chemical reconstruction involving the formation of quasi-compounds and their self-ordering on the metal surfaces. The chemical reconstruction is indispensablly important to understand the structure and catalysis of alloy and bimetallic surfaces. Pt0.25Rh0.75(100) alloy surface being active for the reaction of NO with H2 is an interesting example. When the Pt-Rh(100) alloy surface is exposed to NO or O2 at arround 500 K, a p(3 × 1) ordered Rh-O over-layer is obtained on a Pt-enriched 2nd layer by the chemical reconstruction. Ordering of Rh-0 in the p(3 × 1) structure on the Pt(100) surface was reproduced by heating a Rh/Pt(100) bimetallic surface in O2, and the chemical reconstruction making the p(3 × 1) Rh-O overlayer on a Pt enriched 2nd layer was also proved by heating a Pt/Rh(100) bimetallic surface in O2 or NO. The activation mechanism of the Pt-Rh alloy and the Pt/Rh bimetallic surfaces by the chemical reconstruction was evidently shown by using a Pt deposited Rh(100), Pt/Rh(100), surface. That is, the Pt/Rh(100) is not so active for the reaction of NO with H2, but the reconstructed p(3 × 1)Rh-O/Pt-layer/Rh(100) surface is very active for the reaction. Therefore, it was concluded that the chemical reconstruction of the Pt-Rh catalyst makes the active surface which is composed of Rh-O and a Pt layer.  相似文献   

9.
Quantum state-resolved sticking coefficients on Pt(111) and Ni(111) surfaces have been measured for CH4 excited to the first overtone of the antisymmetric C-H stretch (2nu3) at well-defined kinetic energies in the range of 10-90 kJ/mol. The ground-state reactivity of CH4 is approximately 3 orders of magnitude lower on Ni(111) than on Pt(111) for kinetic energies in the range of 10-64 kJ/mol, reflecting a difference in barrier height of 28+/-6 kJ/mol. 2nu3 excitation of CH4 increases its reactivity by more than 4 orders of magnitude on Ni(111), whereas on Pt(111) the reactivity increase is lower by 2 orders of magnitude. We discuss the observed differences in the state-resolved reactivity for the ground state and 2nu3 excited state of methane in terms of a difference in barrier height and transition state location for the dissociation reaction on the two metal surfaces.  相似文献   

10.
Oxygen reduction reaction (ORR) activities were evaluated for clean Pt(111) and Ni/Pt(111) model catalysts fabricated by molecular beam epitaxy. Exposure of clean Pt(111) to 1.0 L CO at 303 K produced linear-bonded and bridge-bonded CO-Pt IR bands at 2093 and 1858 cm? 1. In contrast, 0.3-nm-thick Ni deposited on Pt(111) at 573 K (573 K-Ni0.3 nm/Pt(111)) produced broad IR bands for adsorbed CO at around 2070 cm? 1; the separation of reflection high-energy electron diffraction (RHEED) streaks is slightly wider for 573 K-Ni0.3 nm/Pt(111) than for the clean Pt(111). For 823 K-Ni0.3 nm/Pt(111), the separation of the RHEED streaks is the same as that for the Pt(111), and a single sharp IR band due to adsorbed CO is located at 2082 cm? 1. The results suggest that for the 823 K-Ni0.3 nm/Pt(111), a Pt-enriched outermost surface (Pt-skin) was formed through surface segregation of the substrate Pt atoms. ORR activities for the 573 K- and 823 K-Ni0.3 nm/Pt(111) as determined from linear sweep voltammetry curves were five times and eight times higher than that for clean Pt(111), respectively, demonstrating that Pt-skin generation is crucial for developing highly active electrode catalysts for fuel cells.  相似文献   

11.
Methanol was used as a probe molecule to examine the reforming activity of oxygenates on NiPt(111) and CoPt(111) bimetallic surfaces, utilizing density functional theory (DFT) modeling, temperature-programmed desorption, and high-resolution electron energy loss spectroscopy (HREELS). DFT results revealed a correlation between the methanol and methoxy binding energies and the surface d-band center of various NiPt(111) and CoPt(111) bimetallic surfaces. Consistent with DFT predictions, increased production of H2 and CO from methanol was observed on a Ni surface monolayer on Pt(111), designated as Ni-Pt-Pt(111), as compared to the subsurface monolayer Pt-Ni-Pt(111) surface. HREELS was used to verify the presence and subsequent decomposition of methoxy intermediates on NiPt(111) and CoPt(111) bimetallic surfaces. On Ni-Pt-Pt(111) the methoxy species decomposed to a formaldehyde intermediate below 300 K; this species reacted at approximately 300 K to form CO and H2. On Co-Pt-Pt(111), methoxy was stable up to approximately 350 K and decomposed to form CO and H2. Overall, trends in methanol reactivity on NiPt(111) bimetallic surfaces were similar to those previously determined for ethanol and ethylene glycol.  相似文献   

12.
Three metal square planar complexes of the type [M(CH3)2(NH3)2] (M = Ni, Pd, Pt), with a systematic variation in the metals, are chosen to investigating their SN2-type oxidative addition reactions with methyl iodide by using the B3LYP levels of theory. The oxidative addition was found to take place via a transition state with a nearly linear arrangement of the I-CH3-M moiety. Solvation effects in these oxidative addition reactions were also investigated. Considering the nature of the metal centre and solvation effects, the following conclusions emerge: (i) addition of MeI is exothermic for all three metals, and Pt is predicted to react with a much lower barrier than either Pd or Ni. The results describe that the MeI addition would be expected to be more favourable with the complex bearing the third-row metal (platinum) as compared to the other triad metals, nickel or palladium, in which case a more strongly bound MeI adduct is formed with a lower activation barriers and the reaction being more exothermic; (ii) the reaction is very difficult to occur in low polar solvents, such as benzene, due to the high barrier which is induced by dissociation of iodide anion from methyl group, but the reaction easily occurs in polar solvents, such as acetonitrile; this is attributed to the ability of polar solvents to solvate and therefore stabilize the related polar intermediate ion pair. Ethane reductive elimination from the M(VI) complexes fac-[M(CH3)3(NH3)2I] were also studied, indicating that the Ni(IV) and Pd(IV) complexes are very prone to undergo the reductive elimination while the Pt(IV) analogous is less reactive towards the reductive elimination. The results indicate that in contrast to the Me-Me reductive elimination, the SN2 oxidative addition reaction of MeI to M(II) is much less sensitive to the nature of the metal centre, suggesting that the nucleophilicity of M(II) in [M(CH3)2(NH3)2] does not change significantly as one moves from M = Ni to Pt.  相似文献   

13.
Kinetics of the oxygen reduction reaction (orr) and the hydrogen evolution–oxidation reactions (her/hor) were studied on the Pt(111) and Pt(100) surfaces in 0.05 M H2SO4 containing Cl. The orr is strongly inhibited on the (100) surface modified by adsorbed Cl (Clad), and it occurs as a 3.5e reduction via solution phase peroxide formation. In the hydrogen adsorption (Hupd) potential region, the orr is even more inhibited, and corresponds only to a 2 e reduction at the negative potential limit where the electrode is covered by one monolayer of Hupd and some (unknown) amount of Clad. On the Pt(111)---Clad surface, the orr is inhibited relatively little (in addition to that caused by strong bisulfate anion adsorption on this surface), and the reaction pathway is the same as in Cl free solution. The kinetics of the hor on Pt(111) are the same in pure solution and in a solution containing Cl, since Clad does not affect platinum sites required for the breaking of the H---H bond. A relatively large inhibition of the hor is observed on the (100) surface, implying that strongly adsorbed Clad is present on the surface even near 0 V.  相似文献   

14.
研究了乙烷在Ni(111)表面解离的可能反应机理, 使用完全线性同步和二次同步变换(complete LST/QST)方法确定解离反应的过渡态. 采用基于第一性原理的密度泛函理论与周期平板模型相结合的方法, 优化了C2H6裂解反应过程中各物种在Ni(111)表面的top, fcc, hcp和bridge位的吸附模型, 计算了能量, 并对布居电荷进行分析, 得到了各物种的有利吸附位. 结果表明, 乙烷在Ni(111)表面C—C解离的速控步骤活化能为257.9 kJ·mol-1, 而C—H解离速控步骤活化能为159.8 kJ·mol-1, 故C—H键解离过程占优势, 主要产物是C2H4和H2.  相似文献   

15.
用基于密度泛函理论的第一性原理方法研究了氧原子在具有Pt皮肤的Pt3Ni(111)[记为Pt-skin-Pt3Ni(111)]表面的吸附和扩散特性. 重点研究了氧原子在Pt-skin-Pt3Ni(111)表面的扩散问题, 这对理解Pt-skin-Pt3Ni(111)催化剂的高催化活性有重要意义. 结果表明: 氧原子容易吸附在fcc位; 催化剂Pt3Ni中的Ni原子对催化剂的电子结构有很大影响, 从而改变了其对氧原子的吸附. 用推拉弹性带(NEB)方法搜索氧原子的扩散势垒, 并解释了Pt-skin-Pt3Ni(111)催化剂的高催化活性.  相似文献   

16.
Water adsorption on Pt(111) surfaces treated with oxygen or hydrogen chloride at 20 K has been studied by Fourier transform infrared spectroscopy and scanning tunneling microscopy. Water molecules chemisorb predominantly on the sites of the electronegative additives (O or Cl-), forming hydrogen bonds of O-HO or O-HCl-. On a Pt(111)-2×2-O surface, water adsorption produces species (O(D2O)), monomeric water (D2O), (O(D2O)2) and ring tetramer-like cluster (O(D2O)3) on a Pt(111) surface. On a Pt(111)-3×3-Cl- (θ=0.44) surface, water adsorption gives rise to a Pt(111)-(4×2)-(H3O++Cl-) co-adsorption structure to form a hydrogen-bonding network between Cl- and H3O+ ions.  相似文献   

17.
The electronic and chemical (adsorption) properties of bimetallic Ag/Pt(111) surfaces and their modification upon surface alloy formation, that is, during intermixing of Ag and Pt atoms in the top atomic layer upon annealing, were studied by X‐ray photoelectron spectroscopy (XPS) and, using CO as probe molecule, by temperature‐programmed desorption (TPD) and infrared reflection absorption spectroscopy (IRRAS), respectively. The surface alloys are prepared by deposition of sub‐monolayer Ag amounts on a Pt(111) surface at room temperature, leading to extended Ag monolayer islands on the substrate, and subsequent annealing of these surfaces. Surface alloy formation starts at ≈600–650 K, which is evidenced by core‐level shifts (CLSs) of the Ag(3d5/2) signal. A distinct change of the CO adsorption properties is observed when going to the intermixed PtAg surface alloys. Most prominently, we find the growth of a new desorption feature at higher temperature (≈550 K) in the TPD spectra upon surface alloy formation. This goes along with a shift of the COad‐related IR bands to lower wave number. Surface alloy formation is almost completed after heating to 700 K.  相似文献   

18.
Methanol adsorption on ion‐sputtered Pt(111) surface exhibiting high concentration of vacancy islands and on (2 × 1)Pt(110) single crystal were investigated by means of photoelectron spectroscopy (PES) and thermal desorption spectroscopy. The measurements showed that methanol adsorbed at low temperature on sputtered Pt(111) and on (2 × 1)Pt(110) surfaces decomposed upon heating. The PES data of methanol adsorption were compared to the data of CO adsorbed on the same Pt single crystal surfaces. In the case of the sputtered Pt(111) surface, the dehydrogenation of HxCO intermediates is followed by the CO bond breakage. On the (2 × 1)Pt(110) surface, carbon monoxide, as product of methanol decomposition, desorbed molecularly without appearance of any traces of atomic carbon. By comparing both platinum surfaces we conclude that methanol decomposition occurs at higher temperature on sputtered Pt(111) than on (2 × 1)Pt(110). Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

19.
交联壳聚糖树脂对Ni(II)的吸附行为研究   总被引:7,自引:0,他引:7  
袁彦超  章明秋  容敏智 《化学学报》2005,63(18):1753-1758
研究了甲醛、环氧氯丙烷交联壳聚糖树脂(AECTS)对Ni(II)的吸附行为和吸附Ni(II)对树脂结构及性能的影响. 用FTIR, WAXD, TGA和DSC对吸附产物进行了结构表征, 并深入分析了AECTS与Ni(II)之间的作用机理. 结果表明: AECTS主要以配位形式吸附Ni(II); AECTS吸附Ni(II)后, 结晶度下降、总体上热稳定性变差; Ni(II)对AECTS的主链分解具有明显的催化功能, 而空气气氛中对AECTS在500 ℃附近的分解表现出火焰缓蚀作用. AECTS对Ni(II)的吸附行为符合Langmuir模型, 属于单分子层吸附, 所有吸附位对Ni(II)的作用近似相同; 与壳聚糖(CTS)比较, 造成AECTS对Ni(II)吸附量增大的主要原因是AECTS结晶度下降和孔隙率增加, 二者导致在交联处理前Ni(II)难于接近的吸附位点“活性”相对增大, 使其更容易与Ni(II)相结合; 不同介质对AECTS吸附Ni(II)的影响大小顺序为HCl>CdCl2>MgCl2>NaCl, 前两者使吸附量减小, MgCl2使吸附量稍有增加, NaCl对吸附量基本没有影响.  相似文献   

20.
Reactions at the Metallic Substrate: Single Crystals of Ni(NH3)2V2F8 Except for the main product (NH4)2[TaF7] and some [Ni(NH3)6][TaF6]2, the new light green Ni(NH3)2V2F8 is obtained by the reaction of (NH4)F with tantalum and vanadium (molar ratio of (NH4)F : Ta : V = 36 : 6 : 1) at 400 °C in a sealed Monel ampoule (Cu32Ni68). The crystal structure (orthorhombic, Fmmm, Z = 4, a = 752.9(1), b = 762.9(1), c = 1307.6(2) pm) is related to that of (NH4)[VF4]. According to {Ni(NH3)2}0,5[VF4], corrugated layers of vertex-connected octahedra [VF4/2F2/1] are stacked in the [001] direction. Between these layers trans-{Ni(NH3)2} units are inserted so that Ni2+ enhances its coordination number to 6 by two times two F from the layers above and below.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号