首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The synthesis of the spiroacetal-containing anti-Helicobacter pylori agents (3S,2'S,5'S,7'S)- (ent-CJ-12,954) and (3S,2'S,5'R,7'S)- (ent-CJ-13,014) has been carried out based on the convergent union of a 1:1 mixture of heterocycle-activated spiroacetal sulfones and with (3S)-phthalide aldehyde . The synthesis of the (3R)-diastereomers (3R,2'S,5'S,7'S)- and (3R,2'S,5'R,7'S)- was also undertaken in a similar manner by union of (3R)-phthalide aldehyde with a 1:1 mixture of spiroacetal sulfones and . Comparison of the (1)H and (13)C NMR data, optical rotations and HPLC retention times of the synthetic compounds (3S,2'S,5'S,7'S)- and (3S,2'S,5'R,7'S)- and the (3R)-diastereomers (3R,2'S,5'S,7'S)- and (3R,2'S,5'R,7'S)-, with the naturally occurring compounds, established that the synthetic isomers and were in fact enantiomeric to the natural products CJ-12,954 and CJ-13,014. The (2S,8S)-stereochemistry in protected dihydroxyketone , the precursor to the mixture of spiroacetal sulfones and was established via union of readily available (S)-acetylene with aldehyde in which the (4S)-stereochemistry was established via asymmetric allylation. Deprotection and cyclization of protected dihydroxyketone afforded an inseparable 1:1 mixture of spiroacetal alcohols and that were converted into a 1:1 inseparable mixture of spiroacetal sulfones and . Phthalide-aldehyde was prepared via intramolecular acylation of bromocarbamate in which the (3S)-stereochemistry was established via asymmetric CBS reduction of ketone .  相似文献   

2.
The first total synthesis of (+/-)-nor-1,6-germacradien-5-ols is described. The synthetic route involves the RCM methodology for the ring formation and a selective 1,2 addition of MeLi to cyclodecenone. By altering the order of the last synthetic steps, TBSO-protected (+/-)-(1Z,6E)-nor-1,6-germacradien-5-ols (+/-)-(5S*,8R*)-16 and -(+/-)-(5S*,8S*)-16 were obtained. The synthetic strategy via cyclodecenone offers the possibility of preparing different analogues of the title compounds through addition of other nucleophiles. Moreover, nor-germacrene D could be accessed from the target molecule by methylenation of its carbonyl moiety. (+/-)-nor-1,6-Germacradien-5-ol [(+/-)-(1E,5S*,6E,8S*)-2] was synthesized in eight steps from isovaleric acid. The 10-membered ring was formed by RCM, and the tertiary alcohol moiety was introduced in the last step via a highly diastereoselective addition of MeLi to (+/-)-(1E,6E)-1,6-cyclodecen-5-one (+/-)-E,E-5. Addition of MeLi to cyclodecenone (+/-)-Z,E-5 also occurred with complete selectivity to provide (+/-)-(1Z,5S*,6E,8S*)-2. A slightly different synthetic pathway was also explored, in which the order of the final synthetic steps was switched: the enone formation and the addition of MeLi were conducted prior to the cyclization. When the hydroxy group was protected as a TBS ether, the newly formed olefin had exclusively Z configuration. Thus, TBSO-protected (+/-)-(1Z,6E)-nor-1,6-germacradien-5-ols (+/-)-16 were obtained as a 1:1 (5S*,8S*)/(5R*,8S*) mixture. The NMR spectra of these two diastereomers confirmed the relative stereochemistry of natural (-)-1,6-germacradien-5-ol (1) at C5 and C8.  相似文献   

3.
The hemilabile chiral C2 symmetrical bidentate substituted amide ligands (1R,2R)-5(a-d) and (1S,2S)-6(a-d) were synthesized in quantitative yield from (1R,2R)-(+)-3-methylenecyclo-propane-1,2-dicarboxylic acid (1R,2R)-3 and (1S,2S)-(-)-3-methylene-cyclopropane-1,2-dicarboxylic acid (1S,2S)-3, in two steps, respectively. The chiral Feist's acids (1R,2R)-3 and (1S,2S)-3 were obtained in good isomeric purity by resolution of trans-(±)-3-methylene-cyclopropane-1,2-dicarboxylic acid from an 8:2 mixture of tert-butanol and water, using (R)-(+)-α-methylbenzyl amine as a chiral reagent. This process is reproducible on a large scale. All these new synthesized chiral ligands were characterized by 1H-NMR, 13C-NMR, IR, and mass spectrometry, as well as elemental analysis and their specific rotations were measured. These new classes of C2 symmetric chiral bisamide ligands could be of special interest in asymmetric transformations.  相似文献   

4.
Two new synthetic methods were established for the efficient synthesis of optically active cyclohexene antisepsis agent, ethyl (6R)-6-[N-(2-chloro-4-fluorophenyl)sulfamoyl]cyclohex-1-ene-1-carboxylate [(R)-1: TAK-242)]. The first method involved recrystallization from methanol of the diastereomeric mixture (6RS,1'R)-7, obtained by esterification of carboxylic acid 3 with (S)-1-(4-nitrophenyl)ethanol [(S)-5)] to give the desired isomer (6R,1'R)-7 with 99% de in 32% yield. Subsequent catalytic hydrogenolysis and esterification gave (R)-1 with >99% ee. The second method employed enantioselective hydrolysis of acetoxymethyl ester 9a (prepared by alkylation of 3 with bromomethyl acetate) with Lipase PS-D to give the eutomeric enantiomer (R)-9a with excellent enantioselectivity (>99% ee) and high yield (48%). The desired (R)-1 was then obtained by transesterification with ethanol in the presence of concentrated sulfuric acid without loss of ee. Of these, the procedure employing enzymatic kinetic resolution using Lipase PS-D is the more efficient and practical preparation of (R)-1.  相似文献   

5.
(R(S))-1 (85% ee) was prepared by utilizing a porcin pancreatic lipase-promoted hydrolysis of sulfinyldiacetic acid dimethyl ester (8) which was derived from thiodiacetic acid (7). (R(S))-1 (99% ee) and (S(S))-1 (99% ee) were readily obtained by methanolysis of (R(S),S)-12 and (S(S),S)-12 with MeONa in MeOH. (R(S),S)-12 and (S(S),S)-12 were furnished by chromatographic separation of the diastereomeric mixture, obtained by oxidation of thiodiacetic mono-carboxylic acid (11) with 30% H2O2 followed by dehydrative condensation of the resultant sulfinyldiacetic mono-carboxylic acid with 4(S)-isopropyl-1,3-thiazolidine-2-thione. (R(S))-1 (99% ee) was successively treated with (TMS)2NLi, Ac2O, and TMSOTf to give a major chiral-3 product in 75% ee and in a highly chemoselective manner (chiral-3:chiral-2=93:7).  相似文献   

6.
Antifungal bioassay-guided fractionation of Combretum nelsonii leaf extracts afforded two closely related triterpenes, asiatic acid and arjunolic acid. Antifungal activities of the mixture of asiatic acid and arjunolic acid were determined against five fungal animal pathogens. The minimum inhibitory concentrations of the mixture to the different pathogens varied from 0.2 to 1.6 microg mL(-1); Candida albicans (0.9 microg mL(-1)), Cryptococcus neoformans (0.4 microg mL(-1)), Aspergillus fumigatus (1.6 microg mL(-1)), Microsporum canis (0.2 microg mL(-1)) and Sporothrix schenckii (0.2 microg mL(-1)). Microsporum canis and S. schenckii were the most susceptible followed by C. neoformans. Aspergillus fumigatus was the most resistant. The R(f) value of the mixture of asiatic acid and arjunolic acid was 0.27 in CEF (chloroform : ethylacetate : formic acid), 0.09 (BEA; benzene : ethanol : ammonium hydroxide) and 0.55 (EMW; ethylacetate : methanol : water) which was active against all pathogens. In vitro cytotoxicity of mixture gave an LC(50) of 10.58 microg mL(-1) towards Vero monkey kidney cells.  相似文献   

7.
Asymmetric transfer hydrogenation of N-substituted (3S)-3-amino-1-chloro-4-phenyl-2-butanones in the presence of CpRhCl[(R,R)-Tsdpen] (S/C = 1000) with a mixture of formic acid/triethylamine gave N-substituted (2R,3S)-3-amino-1-chloro-2-hydroxy-4-phenylbutanes with up to 93% de in a quantitative yield, and reduction with the enantiomeric catalyst CpRhCl[(S,S)-Tsdpen] gave (2S,3S)-diastereomeric alcohol with up to 96% de.  相似文献   

8.
The dehydratase (DH) domain of module 4 of the 6-deoxyerythronolide B synthase (DEBS) has been shown to catalyze an exclusive syn elimination/syn addition of water. Incubation of recombinant DH4 with chemoenzymatically prepared anti-(2R,3R)-2-methyl-3-hydroxypentanoyl-ACP (2a-ACP) gave the dehydration product 3-ACP. Similarly, incubation of DH4 with synthetic 3-ACP resulted in the reverse enzyme-catalyzed hydration reaction, giving an ~3:1 equilbrium mixture of 2a-ACP and 3-ACP. Incubation of a mixture of propionyl-SNAC (4), methylmalonyl-CoA, and NADPH with the DEBS β-ketoacyl synthase-acyl transferase [KS6][AT6] didomain, DEBS ACP6, and the ketoreductase domain from tylactone synthase module 1 (TYLS KR1) generated in situ anti-2a-ACP that underwent DH4-catalyzed syn dehydration to give 3-ACP. DH4 did not dehydrate syn-(2S,3R)-2b-ACP, syn-(2R,3S)-2c-ACP, or anti-(2S,3S)-2d-ACP generated in situ by DEBS KR1, DEBS KR6, or the rifamycin synthase KR7 (RIFS KR7), respectively. Similarly, incubation of a mixture of (2S,3R)-2-methyl-3-hydroxypentanoyl-N-acetylcysteamine thioester (2b-SNAC), methylmalonyl-CoA, and NADPH with DEBS [KS6][AT6], DEBS ACP6, and TYLS KR1 gave anti-(2R,3R)-6-ACP that underwent syn dehydration catalyzed by DEBS DH4 to give (4R,5R)-(E)-2,4-dimethyl-5-hydroxy-hept-2-enoyl-ACP (7-ACP). The structure and stereochemistry of 7 were established by GC-MS and LC-MS comparison of the derived methyl ester 7-Me to a synthetic sample of 7-Me.  相似文献   

9.
Optically pure (5R)- [and (5S)]-5,6-dihydro-5-phenyl-2H-1, 4-oxazin-2-one N-oxides [(5R)- and (5S)-2] were designed as chiral (E)-geometry-fixed alpha-alkoxycarbonylnitrones 1. The nitrones (5R)- and (5S)-2 were synthesized by three-step oxidation of (R)- and (S)-phenylglycinols [(R)- and (S)-3], condensation of the resulting (R)- and (S)-2-hydroxylamino-2-phenylethanols [(R)- and (S)-5] with glyoxylic acid, and cyclization of the intermediary nitrones (R)- and (S)-6b. The nitrone (5R)-2reacted with olefins 7-14 under mild conditions to afford the corresponding cycloadducts 15-22 as the main products via the least sterically demanding exo modes. Cycloadduct 30 obtained from (5S)-2 and cyclopentadiene was effectively elaborated to (1S,4S, 5R)-4-benzyloxycarbonylamino-2-oxabicyclo[3.3.0]oct-7-en-3-one (28), the key synthetic intermediate of carbocyclic polyoxin C.  相似文献   

10.
We describe the practical synthetic route for (2S)-7-methoxy-1,2,3,4-tetrahydro-2-naphthylamine 1(2S)-2-amino-7-methoxytetraline; (S)-AMT]. (2R)-2-(3-Methoxybenzyl)succinic acid [(R)-1] was obtained by the optical resolution of 2-(3-methoxybenzyl)succinic acid (1) as the salt of (1R,2S)-2-(benzylamino)cyclohexylmethanol (7), and (R)-1 was converted to the optically active (2S)-7-methoxy-1,2,3,4-tetrahydro-2-naphthoic acid [(S)-2] by the intramolecular Friedel-Crafts reaction followed by catalytic hydrogenation. (S)-AMT was obtained from the acid (S)-2 by Hofmann rearrangement without racemization.  相似文献   

11.
Matsuura F  Hao J  Reents R  Kishi Y 《Organic letters》2006,8(15):3327-3330
[Structure: see text] Pinnatoxins B and C were synthesized from diols (34R)-3b and (34S)-3a, respectively, in a stereochemically controlled manner. Through extensive analysis of the 1H NMR spectra of synthetic PnTXs B and C, the diagnostic NMR signals were first identified to differentiate (34S)- and (34R)-diastereomers and then used to establish the C34 configuration of natural PnTXs B and C as 34S and 34R, respectively.  相似文献   

12.
Recombinant nanchangmycin synthase module 2 (NANS module 2), with the thioesterase domain from the 6-deoxyerythronolide B synthase (DEBS TE) appended to the C-terminus, was cloned and expressed in Escherichia coli. Incubation of NANS module 2+TE with (±)-2-methyl-3-keto-butyryl-N-acetylcysteamine thioester (1), the SNAC analog of the natural ACP-bound substrate, with methylmalonyl-CoA (MM-CoA) in the absence of NADPH gave 3,5,6-trimethyl-4-hydroxypyrone (2), identified by direct comparison with synthetic 2 by radio-TLC-phosphorimaging and LC-ESI(+)-MS-MS. The reaction showed k(cat) 0.5 ± 0.1 min(-1) and K(m)(1) 19 ± 5 mM at 0.5 mM MM-CoA and k(cat)(app) 0.26 ± 0.02 min(-1) and K(m)(MM-CoA) 0.11 ± 0.02 mM at 8 mM 1. Incubation in the presence of NADPH generated the fully saturated triketide chain elongation product as a 5:3 mixture of (2S,4R)-2,4-dimethyl-5-ketohexanoic acid (3a) and the diastereomeric (2S,4S)-3b. The structure and stereochemistry of each product was established by comparison with synthetic 3a and 3b by a combination of radio-TLC-phosphorimaging and LC-ESI(-)-MS-MS, as well as chiral capillary GC-MS analysis of the corresponding methyl esters 3a-Me and 3b-Me. The recombinant dehydratase domain from NANS module 2, NANS DH2, was shown to catalyze the formation of an (E)-double bond by syn-dehydration of the ACP-bound substrate anti-(2R,3R,4S,5R)-2,4-dimethyl-3,5-dihydroxyheptanoyl-ACP6 (4), generated in situ by incubation of (2S,3R)-2-methyl-3-hydroxypentanoyl-SNAC (5), methylmalonyl-CoA, and NADPH with the recombinant [KS6][AT6] didomain and ACP6 from DEBS module 6 along with the ketoreductase from the tylactone synthase module 1 (TYLS KR1). These results also indirectly establish the stereochemistry of the reactions catalyzed by the KR and enoylreductase (ER) domains of NANS module 2.  相似文献   

13.
A synthetic route to 4(5)-(beta-D-ribofuranosyl)imidazole (1), starting from 2,3,5-tri-O-benzyl-D-ribose (5), was developed via a Mitsunobu cyclization. Reaction of 5 with the lithium salt of bis-protected imidazole afforded the corresponding 5-ribosylimidazole 7RS. Hydrolysis of 7RS gave a 1:1 mixture of diol isomers 8R and 8S having an unsubstituted imidazole. Mitsunobu cyclization of the mixture 8RS using N,N,N',N'-tetramethylazodicarboxamide and Bu(3)P exclusively afforded benzylated beta-ribofuranosyl imidazole 9beta in 92% yield, accompanied by alpha-anomer 9alpha, in a ratio of 26.3:1. The configuration of 9beta was established by X-ray crystallography of ethoxycarbonyl derivative 10beta. Reductive debenzylation of 9beta over Pd/C was carried out, and the synthesis of 1 was attained from starting 5 in four steps and 87% overall yield. This synthetic methodology was extended to the synthesis of 4(5)-(2-deoxy-beta-D-ribofuranosyl)imidazole (2). Mitsunobu cyclization of a 1:1 mixture of the corresponding diol isomers 14RS produced 15beta and 15alpha in a ratio of 5.4:1. The synthesis of 2 was attained in a 59% overall yield from the starting 3,5-di-O-benzyl-2-deoxy-D-ribose (12). beta-Stereoselective glycosylation in the key step is discussed and explained by intramolecular hydrogen bonding between an NH in the imidazole and the oxygen functional group in the sugar moiety.  相似文献   

14.
The first total syntheses of aeruginosin 298-A (1) and aeruginosin 298-B (3) are described. The syntheses of the alternative putative structures 2 and 4 were also accomplished. The key common strategic element is the stereo-controlled synthesis of (2S,3aS,6R,7aS)-6-hydroxyoctahydroindole-2-carboxylic acid (L-Choi, 5) from L-tyrosine. The synthesis of this new bicyclic alpha-amino acid, which is the core of aeruginosins, involves Birch reduction of O-methyl-L-tyrosine (6) and aminocyclization of the resulting dihydroanisole 7 in acid medium, followed by N-benzylation to give the diastereoisomers 12 and 13. Upon acid treatment with HCl-MeOH, the last two produce an equilibrium mixture in which the endo isomer 13 significantly predominates. Hydrogenation of 13 in the presence of (Boc)2O gives 16, which on reduction with LS-Selectride furnishes the alcohol 22, a protected L-Choi. Successive couplings of 22 with D-leucine, protected (R)-(4-hydroxyphenyl)lactic acid, and L-arginine fragments, followed by reduction to the argininol level and a deprotection end step complete the synthetic sequence to produce aeruginosin 298-A (1). Spectral comparison showed that peptide 2, with the structure previously proposed for aeruginosin 298-A, was different from the natural product. However, synthetic 1 was found to be identical to the isolated natural sample of aeruginosin 298-A. These results unequivocally establish that the absolute stereochemistry of aeruginosin 298-A, formerly assigned incorrectly, is D-Hpla-D-Leu-L-Choi-L-Argol, as shown by structure 1. Aeruginosin 298-B was also synthesized and shown to be a mixture of rotamers of D-Hpla-D-Leu-L-ChoiNH2 (3), rather than an epimeric mixture of 3 and the L-Leu-incorporating 4.  相似文献   

15.
[structure: see text] The lipopeptide callipeltin D (1) was synthesized using an Fmoc-based solid-phase strategy in seven steps and 35% overall yield. The 1H NMR of synthetic 1 correlated closely with that of the natural product, confirming the configurational assignment of the novel amino acid constituent (2R,3R,4S)-4-amino-7-guanidino-2,3-dihydroxyheptanoic acid.  相似文献   

16.
The first synthesis of the spiroacetal-containing anti-Helicobacter pylori agents ent-CJ-12,954 and ent-CJ-13,014 is reported based on the union of a heterocycle-activated spiroacetal-containing sulfone fragment with a phthalide-containing aldehyde fragment; comparison of the 1H and 13C NMR data, optical rotations and HPLC retention times of the synthetic compounds (3S,2"S,5"S,7"S)-(1a) and (3S,2"S,5"R,7"S)-(2a) and the (3R)-diastereomers (3R,2"S,5"S,7"S)-(1b) and (3R,2"S,5"R,7"S)- (2b) with the naturally occurring compounds established that the synthetic isomers (1a) and (2a) were in fact enantiomeric to the natural products CJ-12,954 and CJ-13,014.  相似文献   

17.
A mixture of cerebrosides, called poke-weed cerebrosides, was purified from Phytolaccae Radix (Phytolaccaceae) and characterized as 1-O-beta-D-glucopyranosides of phytosphingosine type ceramides comprised of a common long chain base (2S,3S,4R,8Z)-2-amino-8-octadecene-1,3,4-triol and fatty acids. The fatty acyl chain of ceramide moieties was determined as (2R)-2-hydroxypentacosanoic acid, (2R)-2-hydroxylignoceric acid, (2R)-2-hydroxytricosanoic acid, (2R)-2-hydroxybehenic acid, (2R)-2-hydroxypalmitic acid, and palmitic acid. The pokeweed cerebroside inhibited the cyclooxygenase-2 dependent phase of prostaglandin D2 generation in bone marrow-derived mast cells in a concentration dependent manner with an IC50 of 6.2 microg/ml.  相似文献   

18.
[reaction: see text] A practical method for the synthesis of optically active styrene oxides has been developed via formation of optically active 2-chloro-1-phenylethanols generated by reductive transformation of ring-substituted 2-chloroacetophenones. The optically active alcohols with up to 98% ee are obtainable from the asymmetric reduction of acetophenones with an S/C = 1000-5000 with a formic acid triethylamine mixture containing a well-defined chiral Rh complex, CpRhCl[(R,R)-Tsdpen].  相似文献   

19.
A synthesis of the bistetrahydrofuran Annonaceous acetogenins 30(S)-hydroxybullatacin, uvarigrandin A, and 5(R)-uvarigrandin A through application of a previously disclosed four-component modular approach is described in which extended core segments are coupled to a C4- or C5-hydroxy butenolide terminus. The butenolide termini segments were prepared from (S)- or (R)-malic acid. Spectral properties of synthetic 30(S)-hydroxybullatacin and uvarigrandin A, as well as their Mosher ester derivatives, were in close agreement to the reported values for the natural substances. The synthetic 5(R)-uvarigrandin A is possibly identical to narumicin I, but subtle differences in the reported NMR spectra prevented an unambiguous assessment of this point.  相似文献   

20.
The self-assembled monolayer structure of the products of elaidic acid iodination (the racemic mixture of 9,10-(9S,10R)-diiodooctadecanoic acid and 9,10-(9R,10S)-diiodooctadecanoic acid) and the products of oleic acid iodination (the racemic mixture of 9,10-(9R,10R)-diiodooctadecanoic acid and 9,10-(9S,10S)-diiodooctadecanoic acid) are studied by high-resolution scanning tunneling microscopy. For the iodination products of elaidic acid, the separation of enantiomers into distinct chiral domains during the formation of the 2-D crystal on the highly ordered pyrolytic graphite (HOPG) surface is not observed. Instead, within the diiodooctadecanoic acid SAM, each row of molecules is composed of opposite racemates. The two opposite racemates pack alternately inside a row, using different faces to adsorb on the surface. The unit cell is composed of a pair of opposite racemates, forming a heterochiral structure. For the iodination products of oleic acid, the racemic mixture is observed to exhibit quasi-phase separation during the formation of the 2-D crystal on the HOPG surface. Each row is composed of homochiral acid molecules, either the 9,10-(9R,10R)-diiodooctadecanoic acid (R) or the 9,10-(9S,10S)-diiodooctadecanoic acid (S). The R row and the S row pack alternately, with a unit cell composed of four molecules. Two of the molecules in the unit cell are the 9,10-(9R,10R)-diiodooctadecanoic acid (R) molecules; two are the 9,10-(9S,10S)-diiodooctadecanoic acid (S) molecules. In the unit cell, the two molecules that have the same chirality pack antiparallel inside the homochiral row, using different faces to adsorb on the surface. These results suggest that several different types of chiral assembly are possible. Enantiomers with opposite chirality exhibit many chiral assembly patterns, forming heterochiral structures on the surface in addition to separation to form macroscopic chiral domains. By using different conformations, similar enantiomers with opposite chirality will display many chiral assembly patterns to form heterochiral structures on the surface.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号