首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 390 毫秒
1.
The field equations with variable cosmological and gravitational constants are consider in the presence of perfect fluid for Kaluza-Klein type cosmological model. The exact solutions of the field equations are obtained by using the gamma law equation of state p=(γ−1)ρ in which the parameter γ depends on scale factor R. The functional form of γ(R) is used to analyze a wide range of cosmological solution at early universe for two phases in cosmic history: inflationary phase and radiation dominated phase. The corresponding physical interpretation of cosmological solution are also discussed in the framework of higher dimensional space time.  相似文献   

2.
3.
Einstein field equations are considered in zero-curvature Robertson–Walker (R–W) cosmology with perfect fluid source and time-dependent gravitational and cosmological “constants.” Exact solutions of the field equations are obtained by using the ’gamma-law' equation of state p = (γ − 1)ρ in which γ varies continuously with cosmological time. The functional form of γ (R) is used to analyze a wide range of cosmological solutions at early universe for two phases in cosmic history: inflationary phase and Radiation-dominated phase. The corresponding physical interpretations of the cosmological solutions are also discussed.  相似文献   

4.
A homogeneous and isotropic Friedmann-Robertson-Walker (FRW) model with varying gravitational and cosmological constant is studied in the context of higher dimensional space time. Exact solution of the field equations are obtained by using the “gamma law” equation of state p=(γ−1)ρ, where γ is adiabatic parameter varies continuously as the universe expands. The functional form γ which is assumed to be the function of scale factor R as proposed by Carvalho (1996) is used to analyse the behavior of scale factor R, cosmological constant Λ and the gravitational constant G for two different phases: inflation and radiation. The various physical aspects of the early cosmological models has also been discussed in the framework of higher dimensional space time.  相似文献   

5.
6.
The exact solutions of the field equations are obtained by using the gamma law equation of state p=(γ−1)ρ in which the parameter γ depends on scale factor R. The fundamental form of γ(R) is used to analyze a wide range of phases in cosmic history: inflationary phase and radiation-dominated phase. The corresponding physical interpretations of cosmological solutions are also discussed in the framework of (n+2) dimensional space time.  相似文献   

7.
8.
We have investigated Bianchi Type V barotropic perfect fluid cosmological model in Lyra geometry. To get the deterministic model of the universe, we have assumed the barotropic perfect fluid condition p=γ ρ, 0≤γ≤1 and energy conservation equation i.e. T i;j j =0. The physical and geometrical aspects of the model are discussed. The special cases for γ=1 (stiff fluid distribution), γ=0 (dust distribution), γ=1/3 (disordered radiation) are also discussed.  相似文献   

9.
Bianchi Type-III cosmological models for perfect fluid distribution with time dependent displacement field in the framework of Lyra geometry are investigated. To get the deterministic model of the universe, we have assumed two conditions (i) shear (σ) is proportional to the expansion (θ). This leads to B=C n where B and C are metric potentials and n is a constant. (ii) Universe is filled with barotropic fluid distribution which leads to p=γ ρ, 0≤γ≤1, p being isotropic pressure and ρ the energy density. The physical and geometrical aspects of the model with a special case and singularities in the models are also discussed.  相似文献   

10.
In this paper we present the noncommutative Bianchi Class A cosmological models coupled to barotropic perfect fluid. The commutative and noncommutative quantum solution to the Wheeler–DeWitt equation for any factor ordering, to the anisotropic Bianchi type II cosmological model are found, using a stiff fluid (γ=1). In our toy model, we introduce noncommutative scale factors, is say, we consider that all minisuperspace variables q i does not commute, so the simplectic structure was modified.  相似文献   

11.
We have studied the Bianchi type-V cosmological models with binary mixture of perfect fluid and dark energy in five dimensions. The perfect fluid is obeying the equation of state p=γρ with γ∈[0,1]. The dark energy is considered to be either the quintessence or the Chaplygin gas. The exact solutions of the Einstein’s field equations are obtained in quadrature form.  相似文献   

12.
Following the idea that the global and local arrow of time has a cosmological origin, we define an entropy in the classical and in the quantum periods of the universe evolution. For the quantum period a semi-classical approach is adopted, modelling the universe with Wheeler-De Witt equation and using WKB. By applying the self-induced decoherence to the state of the universe it is proved that the quantum universe becomes a classical one. This allows us to define a conditional entropy which, in our simplified model, is proportional to e 2γ t where γ is the dumping factor associated with the interaction potential of the scalar fields. Finally we find both Gibbs and thermodynamical entropy of the universe based in the conditional entropy.  相似文献   

13.
T Singh  R Chaubey 《Pramana》2006,67(3):415-428
A self-consistent system of gravitational field with a binary mixture of perfect fluid and dark energy given by a cosmological constant has been considered in Bianchi Type-V universe. The perfect fluid is chosen to be obeying either the equation of state p=γρ with γ ε |0,1| or a van der Waals equation of state. The role of A-term in the evolution of the Bianchi Type-V universe has been studied.  相似文献   

14.
Bianchi type III cosmological model for perfect fluid distribution with variable G and Λ are investigated. To get the determinate models, we have assumed the barotropic condition p=γ ρ and shear (σ) is proportional to expansion (θ) where p is isotropic pressure, ρ the matter density and 0≤γ≤1. The physical and geometrical aspects related with the observations and singularities in the models are discussed.  相似文献   

15.
We consider the flat Robertson–Walker model in scalar-tensor theory proposed by Lau and Prokhovnik. In this model, the field equations are solved by using “gamma-law” form of equation of state p=(γ−1)ρ, where the adiabatic parameter ‘gamma’ (γ) varies continuously as the universe expands. Our aim is to study how the adiabatic parameter γ should vary so that in the course of its evolution the universe goes through a transition from an inflationary to a radiation-dominated phase. A unified one parameter function of γ has been considered to describe the two early phases of evolution of universe. The solutions show the power-law expansion and cosmological constant is found to be positive and decreasing function of cosmic time. The solutions are compatible with the Dirac’s large number hypothesis. The deceleration parameter has been presented in a unified manner in terms of scale factor, which describes the inflation of the model. The nature of singularity and the physical properties have been discussed in details.  相似文献   

16.
From the time of CMB decoupling onwards we investigate cosmological evolution subject to a strongly interacting SU(2) gauge theory of Yang–Mills scale, Λ ∼ 10-4 eV (masquerading as the U(1)Y factor of the SM at present). The viability of this postulate is discussed in view of cosmological and (astro-) particle physics bounds. The gauge theory is coupled to a spatially homogeneous and ultralight (Planck-scale) axion field. As first pointed out by Frieman et al., such an axion is a viable candidate for quintessence, i.e. dynamical dark energy, being associated with today’s cosmological acceleration. A prediction of an upper limit for Δtmγ=0, the duration of the epoch stretching from the present to the point where the photon starts to be Meissner massive, is obtained: Δtmγ=0∼2.2 billion years.  相似文献   

17.
We propose to call a dynamical dimensional reduction effective if the corresponding dynamical system possesses a single attracting critical point representing expanding physical space-time and static internal space. We show that theBV × T D multidimensional cosmological model with a hydrodynamic energy-momentum tensor provides an example of effective dimensional reduction. We also study the dynamics of the multidimensional cosmological model of typeBI × T D with an energy-momentum tensor representing low temperature quantum effects, monopole contribution and the cosmological constant. It turns out that anisotropy and the cosmological constant are crucial for the process of dimensional reduction to be effective. We argue that this is the general property of homogeneous multidimensional cosmological models.  相似文献   

18.
We showed in Part I that the Hopf algebra ℋ of Feynman graphs in a given QFT is the algebra of coordinates on a complex infinite dimensional Lie group G and that the renormalized theory is obtained from the unrenormalized one by evaluating at ɛ= 0 the holomorphic part γ+(ɛ) of the Riemann–Hilbert decomposition γ(ɛ)− 1γ+(ɛ) of the loop γ(ɛ)∈G provided by dimensional regularization. We show in this paper that the group G acts naturally on the complex space X of dimensionless coupling constants of the theory. More precisely, the formula g 0=gZ 1 Z 3 −3/2 for the effective coupling constant, when viewed as a formal power series, does define a Hopf algebra homomorphism between the Hopf algebra of coordinates on the group of formal diffeomorphisms to the Hopf algebra ℋ. This allows first of all to read off directly, without using the group G, the bare coupling constant and the renormalized one from the Riemann–Hilbert decomposition of the unrenormalized effective coupling constant viewed as a loop of formal diffeomorphisms. This shows that renormalization is intimately related with the theory of non-linear complex bundles on the Riemann sphere of the dimensional regularization parameter ɛ. It also allows to lift both the renormalization group and the β-function as the asymptotic scaling in the group G. This exploits the full power of the Riemann–Hilbert decomposition together with the invariance of γ(ɛ) under a change of unit of mass. This not only gives a conceptual proof of the existence of the renormalization group but also delivers a scattering formula in the group G for the full higher pole structure of minimal subtracted counterterms in terms of the residue. Received: 21 March 2000 / Accepted: 3 October 2000  相似文献   

19.
We study the thermal conductivity of the one dimensional Toda lattice perturbed by a stochastic dynamics preserving energy and momentum. The strength of the stochastic noise is controlled by a parameter γ. We show that heat transport is anomalous, and that the thermal conductivity diverges with the length n of the chain according to κ(n)∼n α , with 0<α≤1/2. In particular, the ballistic heat conduction of the unperturbed Toda chain is destroyed. Besides, the exponent α of the divergence depends on γ.  相似文献   

20.
V. I. Telnov 《Pramana》2007,69(6):957-961
At linear colliders, the e + e luminosity is limited by beam-collision effects, which determine the required emittances of beams in damping rings (DRs). In γγ collisions at the photon collider, these effects are absent, and so smaller emittances are desirable. In the present damping ring designs, nominal DR parameters correspond to those required for e + e collisions. In this note, I would like to stress once again that as soon as we plan the photon collider mode of ILC operation, the damping ring emittances are dictated by the photon collider requirements — namely, they should be as small as possible. This can be achieved by adding more wigglers to the DRs; the incremental cost is easily justified by a considerable potential improvement of the γγ luminosity. No expert analysis exists as of now, but it seems realistic to obtain a factor five increase of the γγ luminosity compared to the ‘nominal’ DR design.   相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号