首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Six macrocyclic complexes, were synthesized by reaction of 1,4-bis(2-carboxyaldehyde phenoxy)butane and various amines and their copper(II) perchlorate complexes were synthesized by template effect reaction of 1,4-bis(2-carboxyaldehyde phenoxy)butane, Cu(ClO4)2?·?6H2O and amines. The metal-to-ligand ratios were found to be 1?:?1. Cu(II) metal complexes are 1?:?2 electrolytes as shown by their molar conductivities (ΛM) in DMF (dimethyl formamide) at 10?3?M. The Cu(II) complexes are proposed to be square planar based on elemental analysis, FT–IR, UV–Vis, magnetic susceptibility measurements, molar conductivity measurements, and mass spectra.  相似文献   

2.
Schiff bases derived from 4-aminomethylcarbostyril and their transition metal complexes with CoII, NiII, CuII and ZnII have been synthesized and characterized by elemental analysis, molar conductance, magnetic susceptibilities electronic, IR, PMR, ESR, FAB-Mass and thermal studies. From the above spectral studies it is concluded that the ligands of 4-substituted carbostyril Schiff bases, viz, salicylidene 4-aminomethylcarbostyril (SAMC); o-vanillinsalicylidene 4-aminomethylcarbostyril (VAMC) and 5′ chlorosalicylidene 4-aminomethylcarbostyril (CSAMC) act as bidenate molecules coordinating through azomethine nitrogen and phenolic oxygen. The ligands and their metal complexes have been screened in vitro for antibacterial, antifungal and antitumor activity. The results indicate that the biological activity increases on complexation. The CuII complexes of the above ligands show greater inhibitory action towards the P388/s tumor cells at lower concentrations.  相似文献   

3.
Complexes of CrIII, MnII, ZnII & CdII with the polydentate carboxamide ligandN′, N′′-bis(3-carboxy-1-oxoprop-2-enyl) 2-Amino-N-arylbenzamidine (H2L) have been synthesized and characterized by elemental analyses, spectroscopic studies (Vibrational, electronic, ESR and 1H-NMR), magnetic susceptibility measurements, thermal studies and powder diffraction studies. The vibrational spectral data are in agreement with coordination of amide and carboxylate oxygen of the ligands with the metal ions. The electronic spectra indicates octahedral or tetrahedral geometry around the metal ions, has been supported by magnetic susceptibility measurements. The results of electron spin resonance & 1H-NMR spectra have supported the results of other spectral techniques. Kinetic and thermodynamic parameters were computed from the thermal data using Coats and Redfern method, which confirm first order kinetics. Powder diffraction determines the cell parameters of the complexes.  相似文献   

4.
Reaction of [CuII(cyclam)](ClO4)2 or [NiII(cyclam)](ClO4)2 in DMF with aqueous 4-hydroxy-3-(4-sulfonato-1-naphthylazo)naphthalen-1-sulfonate disodium salt (carmoisine) yielded coordination polymers {[CuII(cyclam)](carmoisine dianion)(H2O)5}n and powder {[NiII(cyclam)](carmoisine dianion)}n, respectively (cyclam = 1,4,8,11-tetrazacyclotetradecane). They were characterized by powder X-ray diffraction, IR, Raman spectrometry and TGA.  相似文献   

5.
The reaction of 5-[2-(methylthio)ethyl]-3-phenyl-2-thioxoimidazolidin-4-one (LH) with salts MCl2· xH2O (M = Co, Ni, Cu; x = 2, 6) afforded the [M(L)Cl]n complexes of NiII, CoII, and CuII. The electrochemical behavior of the LH ligand and its complexes was studied using the cyclic voltammetry and rotating disk electrode techniques. The structures of the synthesized compounds were determined by the data of UV—Vis and IR spectroscopy, mass spectrometry, and electrochemical characteristics. Published in Russian in Izvestiya Akademii Nauk. Seriya Khimicheskaya, No. 2, pp. 339–343, February, 2007.  相似文献   

6.
N,N’-Polymethylenebis(thiosalicylidene)iminate and macrocyclic dithiadiazadibenzocycloalkadiene complexes of nickel(II) were synthesized and their electrochemical and spectroscopic properties were studied. Dithiadiazadibenzocycloalkadiene complexes containing two DMSO molecules coordinated to Ni2+ and two outer-sphere ClO4 anions were synthesized by the reaction of the corresponding macrocyclic ligands with Ni(ClO4)2·6H2O. The structure of 3,6-dithia-10,14-diazadibenzo[a,g]cyclopentadeca-9,14-dienylnickel(II)[bis(dimethyl sulfoxide) bis-perchlorate] was established by X-ray diffraction. The UV-Vis spectroscopic data are consistent with octahedral structures of diiminobis(sulfide) complexes, a square-planar structure of the thiosalen complex, and distorted tetrahedral structures of other diiminodithiolate complexes. The reaction of S-tert-butylthiosalicylaldehyde with hydrazine hydrate afforded di(ortho-tert-butylthiobenzal)azine. The reaction of the latter with anhydrous NiCl2 produced a colored complex with the simplest molecular formula Ni(C16H12N2S2) in 15% yield. Semiempirical PM3(tm) calculations and the results of UV-Vis, ESR, and 1H NMR spectroscopy demonstrate that this complex has most probably a dimeric structure, in which two Ni centers adopt a nearly square-planar configuration. The complexes are clearly divided into two types according to their electrochemical behavior in DMF solutions. The type 1 is characterized by reversibility of the first reduction steps. The type 2 is characterized by irreversible two-electron reduction as the first step accompanied by deposition of Ni metal on the electrode surface. Rapid electrochemically initiated alkylation occurs in the presence of various alkylating agents (BunI, BunBr, (DmgH)2CoCH3) in a solution of complex 1 in DMF.__________Published in Russian in Izvestiya Akademii Nauk. Seriya Khimicheskaya, No. 1, pp. 169–183, January, 2005.  相似文献   

7.
Dinuclear heterospin complexes of CuII and MnII 1,1,1,7,7,7-hexafluoroheptane-2,4,6-trionates ([Cu2L2] and [Mn2L2], respectively) with nitronyl nitroxides 2-R-4,4,5,5-tetramethyl-4,5-dihydro-1H-imidazole-3-oxide 1-oxyls (NIT-R, R = H, Me, Et, m-C5H4N, m-NCC6H4, p-NCC6H4, PzMe) and the diradical NIT-Pz-(CH2)4-Pz-NIT (Pz is 1,4-pyrazolylene) were synthesized and structurally characterized. In the complexes under study, the CuII atom tends to have the square-pyramidal coordination environment, and the MnII atom is in an octahedral environment. The magnetochemical investigation of the compounds in the temperature range of 2–300 K showed that the antiferromagnetic exchange coupling dominates in the [Cu2L2] molecules, whereas this coupling in [Mn2L2] is manifested in the experimental plot μeff(T) at T < 100 K. The magnetic properties of the heterospin complexes of [Cu2L2] with NIT-R are also determined by the intramatrix antiferromagnetic exchange coupling. For the complexes of [Mn2L2] with NIT-R, the coordination mode of the nitroxide plays a decisive role.  相似文献   

8.
ILHAN  Salih TEMEL  Hamdi KILIC  Ahmet 《中国化学》2007,25(10):1547-1550
Six new macrocyclic complexes were synthesized by a template reaction of 1,4-bis(2-formylphenoxy)butane with diamines and Cu(NO3)2·3H2O and their structures were proposed on the basis of elemental analysis, FT-IR, UV-Vis, magnetic susceptibility measurements, molar conductivity measurements and mass spectra. The metal to ligand molar ratios of the Cu(Ⅱ) complexes were found to be 1 : 1. The Cu(Ⅱ) complexes are 1 : 2 electrolytes as shown by their molar conductivities (∧m) in DMF at 10^-3 mol·L^-1. Due to the existence of free ions the Cu(Ⅱ) complexes are electrically conductive. Their configurations were proposed to be probably distorted octahedral.  相似文献   

9.
New metal chelates of ZnII and CdII (ML2) based on (4Z)-3-methyl-1- phenyl-5-thioxo-1,5-dihydro-4-H-pyrazol-4-one quinolin-8-ylhydrazone (HL1) and (4Z)-5- methyl-2-phenyl-4-[(quinolin-8-ylimino)methyl]-2,4-dihydro-3H-pyrazole-3-thione (HL2) were synthesized. The structures of the metal chelates were studied by EXAFS and NMR (1H, 13C, and 111Cd) spectroscopy. The structure of the Cd(L1)2 complex was established by X-ray diffraction analysis. The complexes have pseudooctahedral structures with the N4S2 ligand environment.__________Published in Russian in Izvestiya Akademii Nauk. Seriya Khimicheskaya, No. 3, pp. 623–629, March, 2005.  相似文献   

10.
Six new macrocyclic complexes were synthesized by template reaction of (±)-1,4-bis(3-aminopropoxy)butane with metal(II) nitrate and 1,10-bis(2-formylphenyl)-1,4,7,10-tetraoxadecane or 1,7-bis(2-formylphenyl)-1,4,7-trioxaheptane and their structures were proposed on the basis of elemental analysis, FT-IR, UV-Vis, molar conductivity measurements, 1H NMR and mass spectra. The metals to ligand molar ratios of the complexes were found to be 1: 1. The complexes are 1: 2 electrolytes for Pb(II) and Zn(II) complexes and 1: 3 electrolytes for La(III) as shown by their molar conductivities (Λm) in DMSO at 10−3 mol L−1. Due to the existence of free ions in these complexes, such complexes are electrically conductive. The configurations of La(III) and Zn(II) complexes were proposed to probably octahedral.  相似文献   

11.
A new macrocyclic ligand, 1,3,5-triaza-2,4:7,8:15,16-tribenzo-9,15-dioxacycloheptadeca-1,5-diene (L) was synthesized by reaction of 2,6-diaminopyridine with 1,4-bis(2-carboxyaldehydephenoxy)butane. Then, its CuII, NiII, PbII, CoIII and LaIII complexes were synthesized by the template effect by reaction of 2,6-diaminopyridine and 1,4-bis (2-carboxyaldehydephenoxy)butane and Cu(NO3)2 · 3H2O, Ni(NO3)2 · 6H2O, Pb(NO3)2, Co(NO3)2 · 6H2O, La (NO3)3 · 6H2O, respectively. The ligand and its metal complexes were characterized by elemental analysis, IR, 1H- and 13C-n.m.r., UV-vis spectra, magnetic susceptibility, thermal gravimetric analysis, conductivity measurements and mass spectra. All complexes are diamagnetic and the CuII complex is binuclear. The CoII complex was oxidised to CoIII.  相似文献   

12.
A new ligand, 2-carboxybenzaldehyde-(4’-hydroxy)benzoylhydrazone(H2L) and its ZnII and NiII complexes have been synthesized and characterized on the basis of elemental analyses, molar conductivities, 1H-NMR, IR spectra and thermal analyses. In addition, DNA-binding properties of these two metal complexes were investigated using spectrometric titrations, ethidium bromide displacement experiments, and viscosity measurements. The results show that the two complexes, especially the NiII complex, strongly bind with calf-thymus DNA, presumably via an intercalation mechanism. The intrinsic binding constants of the ZnII and NiII complexes with DNA are 2.46 × 105 and 7.94 × 105 M −1, respectively.  相似文献   

13.
Transition metal (NiII, CoII, and CuII) complexes with 1,2-bis[2-(3-pyridylmethylideneamino)phenylthio]ethane (1) and 1,2-bis[2-(4-pyridylmethylideneamino)phenylthio]ethane (2) were synthesized for the first time by slow diffusion of solutions of compounds 1 or 2 in CH2Cl2 into solutions of MX2 · nH2O (M = Ni, Co, or Cu; X = Cl or NO3; n = 2 or 6) in ethanol. The reactions with CoII and CuII chlorides afford complexes of composition M(L)Cl2 (L = 1 or 2). The reactions of compound 1 with NiII salts produce complexes with 1,2-bis(2-aminophenylthio)ethane. The molecular structure of dinitrato[1,2-bis(2-aminophenylthio)ethane]nickel(ii) was confirmed by X-ray diffraction. The ligands and the complexes were investigated by cyclic voltammetry and rotating disk electrode voltammetry. The initial reduction of the complexes proceeds at the metal atom. The oxidation of the chlorine-containing complexes proceeds at the coordinated chloride anion. Published in Russian in Izvestiya Akademii Nauk. Seriya Khimicheskaya, No. 2, pp. 350–355, February, 2008.  相似文献   

14.
The heterospin mixed-ligand complex [Ni6(OH)4Piv4(hfac)4(NIT-Ph)2] (1) (NIT-Ph is 4,4,5,5-tetramethyl-2-phenyl-4,5-dihydro-1H-imidazol-1-oxyl 3-oxide, hfac is hexafluoroacetylacetonate, and Piv is pivalate) was synthesized. The method for the synthesis of complex 1 is based on the replacement of acetone molecules in the hexanuclear complex containing the hexafluoroacetylacetonate and pivalate ligands [Ni6(OH)4Piv4(hfac)4(Me2CO)4] by NIT-Ph molecules. Two monodentate NIT-Ph molecules replace four acetone molecules, because the coordination of the O atom of the nitroxide group results in the blocking of one of the positions in the coordination environment of NiII the access to which is hindered by the phenyl ring of NIT-Ph. As a result, these ions are in a square-pyramidal environment unusual of NiII. In the low-temperature range, the dependence of the magnetization of 1 on the magnetic field is described by the Brillouin function. The reaction of [Ni6Piv4(hfac)4(OH)4(Me2CO)4] with the nitronyl nitroxide radicals 4,4,5,5-tetramethyl-2-(4-pyridyl)-4,5-dihydro-1H-imidazol-1-oxyl 3-oxide (NIT-p-Py) or 4,4,5,5-tetramethyl-2-(1-methyl-1H-imidazol-5-yl)-4,5-dihydro-1H-imidazol-1-oxyl 3-oxide (NIT-Iz) containing the pyridine or 1-methylimidazol-5-yl substituent, respectively, in the side chain is accompanied by the decomposition of the polynuclear fragment and affords the mononuclear complexes Ni(hfac)2(NIT-p-Py)2 and Ni(hfac)2(NIT-Iz)2, respectively. The reaction of 4,4,5,5-tetramethyl-2-(1-methyl-1H-imidazol-5-yl)-4,5-dihyd-ro-1H-imidazol-1-oxyl (Im-Iz), which is the imine analog of NIT-Iz, with [Ni6Piv4(hfac)4(OH)4(Me2CO)4] afforded the decanuclear complex [Ni10(OH)8Piv4(hfac)8(Im-Iz)2(H2O)6]. The molecular and crystal structures of all heterospin compounds were determined, and the magnetic properties of all compounds were investigated in the 2–300 K temperature range.  相似文献   

15.
Macrocyclic ligands N,N-bis[2,6-diiminomethyl-4-methyl-1-hydroxyphenyl]succinoyl dicarboxamide (H2L1) and N,N-bis[2,6-diiminomethyl-4-methyl-1-hydroxyphenyl]sebacoyl dicarboxamide (H2L2) were synthesized and characterized by various spectral techniques. Macrocyclic di- and tetra-homonuclear phenoxo bridged CuII, CoII, NiII, ZnII, CdII and HgII complexes have been synthesized through the template method by using the precursors 2,6-diformyl-4-methylphenol, succinoyldihydrazide/ sebacoyldihydrazide and respective metal chlorides in 2:2:2/2:2:4 ratio respectively. The synthesized complexes were characterized by i.r., n.m.r., u.v.-vis., FAB-mass, e.s.r., magnetic susceptibility and elemental analyses data. The elemental analyses and FAB-mass spectral data have justified the dinuclear and tetra nuclear structure for the complexes of the ligands H2L1 and H2L2 respectively. The observed low magnetic moment values revealed the existence of antiferromagnetic spin exchange interaction operating between the two metal centers. Electronic data suggested the octahedral geometry for NiII complexes and square pyramidal geometry for CuII, CoII, ZnII, CdII and HgII complexes of both the ligands. The CuII, CoII and ZnII complexes of both the ligands have shown good antifungal activity against Aspergillus niger and Fusarium oxysporum and medium to weak antibacterial activity against Escherichia coli and Staphylococcus aureus when compared to the standard drugs Grisefulvin and Ciprofloxacin respectively.  相似文献   

16.
5-Formylpyrrolyl-substituted nitronyl and imino nitroxide radicals HL1 and HL2 were synthesized. Their solid phases are formed by packing pairs of the molecules. In the {HL1...HL1} pairs, the dominant interaction is the ferromagnetic exchange with J/kB = 8.8 K (Hamiltonian \(H = 2J\left( {\overrightarrow {{s_1}} \overrightarrow {{s_2}} } \right)\)). The ferromagnetic exchange occurs also in the heterospin molecules [Ni(L1)2], [Cu(L1)2], and [Ni(L2)2(MeOH)2]. In the complexes [Ni(L1)2] and [Cu(L1)2], a small change in the mutual orientation of the coordinated ligands has a considerable effect on the value and the sign of the energy of exchange interactions between the unpaired electrons of the metal ion and paramagnetic ligands.  相似文献   

17.
Mixed ligand complexes of CoII, NiII and CuII with cysteine and 4-substituted thiosemicarbazides (l 1l 3) have been synthesized. The elemental analyses, molar conductance, spectra [electronic, i.r., 1H-n.m.r., mass] and thermal studies were used to characterize the isolated complexes. Cyclic voltammetry was used to study the electrochemical behaviour of the NiII complexes. The i.r. and 1H-n.m.r. showed that cysteine is deprotonated in the complex and acts as a binegative ligand coordinating through thiol sulphur and COOH groups. Also, thiosemicarbazides act as a bidentate ligand, coordination via NH2 and (C=S) groups. Square-planar geometry has been proposed for CoII, NiII and CuII ternary complexes.  相似文献   

18.
This article presents the results of our investigation on the obtaining of Ni0.65Zn0.35Fe2O4 ferrite nanoparticles embedded in a SiO2 matrix using a modified sol–gel synthesis method, starting from tetraethylorthosilicate (TEOS), metal (FeIII,NiII,ZnII) nitrates and ethylene glycol (EG). This method consists in the formation of carboxylate type complexes, inside the silica matrix, used as forerunners for the ferrite/silica nanocomposites. We prepared gels with different compositions, in order to obtain, through a suitable thermal treatment, the nanocomposites (Ni0.65Zn0.35Fe2O4)x–(SiO2)100–x (where x=10, 20, 30, 40, 50, 60 mass%). The synthesized gels were studied by differential thermal analysis (DTA), thermogravimetry (TG) and FTIR spectroscopy. The formation of Ni–Zn ferrite in the silica matrix and the behavior in an external magnetic field were studied by X-ray diffraction (XRD) and quasi-static magnetic measurements (50 Hz).  相似文献   

19.
Isothermal titration calorimetry has been used to determine the stoichiometry, formation constants and thermodynamic parameters (ΔG o, ΔH, ΔS) for the formation of the citrate complexes with the Mn2+, Co2+, Ni2+ and Zn2+ ions. The measurements were run in Cacodylate, Pipes and Mes buffer solutions with a pH of 6, at 298.15 K. A constant ionic strength of 100 mM was maintained with NaClO4. The influence of a metal ion on its interaction energy with the citrate ions and the stability of the resulting complexes have been discussed.  相似文献   

20.
Eight new macrocyclic complexes were synthesized by template reaction of 1,4-bis(3-aminopropoxy)butane or (±)-trans-1,2-diaminocyclohexane with metal nitrate and 1,2-bis(2-formylphenyl)ethane and their structures were proposed on the basis of elemental analysis, FT-IR, UV-Vis, molar conductivity measurements, 1H NMR and mass spectra. The metals to ligand molar ratios of the complexes were found to be 1: 1. The complexes are 1: 2 electrolytes for Cd(II), Pb(II) and Zn(II) complexes and 1: 3 electrolytes for La(III) as shown by their molar conductivities (Λm) in DMSO at 10−3 mol L−1. Due to the existence of free ions in these complexes, such complexes are electrically conductive. The configurations of Cd(II) and Zn(II) complexes were proposed to probably tetrahedral, La(III) complexes are octahedral and Pb(II) complexes are octahedral geometry in the L1 complex and tetrahedral geometry in the L2 complex.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号