首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The aim of this work is to give a direct and constructive proof of existence and uniqueness of a global solution to the equations of age-dependent population dynamics introduced and considered by M. E. Gurtin & R. C. MacCamy in [3]. The linear theory was developed by F. R. Sharpe & A. J. Lotka [10] and A. G. McKendrick [8] (see also [1], [9]) and extended to the nonlinear case by M. E. Gurtin & R. C. MacCamy in [3] (see also [4] [5] [6]). In [3], the key of the proof of existence and uniqueness was to reduce the problem to a pair of integral equations. In fact, as we shall see, the problem can also be solved by a simple fixed point argument. To outline more clearly the ideas of the proof, we will first discuss the setting and the resolution of the linear case, and then we will generalize the results of [3].  相似文献   

2.
3.
The paper deals with the formulation of non-linear vibrations of a wind turbine wing described in a wing fixed moving coordinate system. The considered structural model is a Bernoulli-Euler beam with due consideration to axial twist. The theory includes geometrical non-linearities induced by the rotation of the aerodynamic load and the curvature, as well as inertial induced non-linearities caused by the support point motion. The non-linear partial differential equations of motion in the moving frame of reference have been discretized, using the fixed base eigenmodes as a functional basis. Important non-linear couplings between the fundamental blade mode and edgewise modes have been identified based on a resonance excitation of the wing, caused by a harmonically varying support point motion with the circular frequency ω. Assuming that the fundamental blade and edgewise eigenfrequencies have the ratio of ω2/ω1?2, internal resonances between these modes have been studied. It is demonstrated that for ω/ω1?0.66,1.33,1.66 and 2.33 coupled periodic motions exist brought forward by parametric excitation from the support point in addition to the resonances at ω/ω1?1.0 and ω/ω2?1.0 partly caused by the additive load term.  相似文献   

4.
In the present study, the geometrically non-linear dynamics of an axially moving plate is examined by constructing the bifurcation diagrams of Poincaré maps for the system in the sub and supercritical regimes. The von Kármán plate theory is employed to model the system by retaining in-plane displacements and inertia. The governing equations of motion of this gyroscopic system are obtained based on an energy method by means of the Lagrange equations which yields a set of second-order non-linear ordinary differential equations with coupled terms. A change of variables is employed to transform this set into a set of first-order non-linear ordinary differential equations. The resulting equations are solved using direct time integration, yielding time-varying generalized coordinates for the in-plane and out-of-plane motions. From these time histories, the bifurcation diagrams of Poincaré maps, phase-plane portraits, and Poincaré sections are constructed at points of interest in the parameter space for both the axial speed regimes.  相似文献   

5.
This paper studies the non-linear dynamics of a soft magneto-elastic Cartesian manipulator with large transverse deflection. The system has been subjected to a time varying magnetic field and a harmonic base excitation at the roller-supported end. Unlike elastic and viscoelastic manipulators, here the governing temporal equation of motion contains additional two frequency forced, and linear and non-linear parametric excitation terms. Method of multiple scales has been used to solve the temporal equation of motion. The influences of various system parameters such as amplitude and frequency of magnetic field strength, amplitude and frequency of support motion, and the payload on the frequency response curves have been investigated for three different resonance conditions. With the help of numerical results, it has been shown that by using suitable amplitude and frequency of magnetic field, the vibration of the manipulator can be significantly controlled. The developed results and expressions can find extensive applications in the feed-forward vibration control of the flexible Cartesian manipulator using magnetic field.  相似文献   

6.
This paper considers, in the frame work of the model of two superposed layers of viscous-potential incompressible magnetic fluids, the problem on formation of resonant waves of two modes on the interface between fluids that arisen as a result of second-harmonic resonance. The fluids moving with uniform velocities parallel to their interface are stressed by a tangential magnetic field. The analysis includes the linear, as well as the non-linear effects where the analytical solutions are constructed using the method of multiple scales, in both space and time, and hence the solvability conditions correspond to the uniform (convergent) solutions are obtained. The solvability conditions are then exploited to derive a more general system of non-linear partial differential equations with complex coefficients governing the amplitudes of the resonant waves. These equations are examined for solutions corresponding to sinusoidal wavetrains consequently different kinds of instabilities are demonstrated. The stability criterion in each case is derived and discussed both analytically and graphically.  相似文献   

7.
The present work deals with the non-linear vibration of a harmonically excited single link roller-supported flexible Cartesian manipulator with a payload. The governing equation of motion of this system is developed using extended Hamilton's principle, which is reduced to the second-order temporal differential equation of motion, by using generalized Galerkin's method. This equation of motion contains both cubic non-linearities of geometric and inertial type in addition to linear forced and non-linear parametric excitation terms. Method of multiple scales is used to solve this non-linear equation and study the stability and bifurcations of the system. Influence of amplitude of the base excitation and mass ratio on the steady state response of the system is investigated for both simple and subharmonic resonance conditions. Critical bifurcation points are determined from the fixed-point responses and periodic, quasi-periodic responses are also found for different system parameters. The results obtained using the perturbation analysis are compared with the previously published experimental work and are found to be in good agreement. This work will be useful for the designer of a flexible manipulator.  相似文献   

8.
Non-linear dynamics of an elastic cable under planar excitation   总被引:9,自引:0,他引:9  
The phenomena of the finite forced dynamics of a suspended cable associated with the quadratic and cubic non-linearities in the equations of motion are studied. A high-order perturbation analysis for the primary resonance is accomplished and numerical results are presented for the frequency-response equation and the region of instability of the steady-state solutions. Multivaluedness of the response curves is shown to occur with different characteristics depending on the cable and forcing parameters. The dependence of the response on the initial conditions is examined by means of the trajectories of the unsteady-state motions.  相似文献   

9.
Multi-frequency vibrations of a system of two isotropic circular plates interconnected by a visco-elastic layer that has non-linear characteristics are considered. The considered physical system should be of interest to many researches from mechanical and civil engineering. The first asymptotic approximation of the solutions describing stationary and no stationary behavior, in the regions around the two coupled resonances, is the principal result of the authors. A series of the amplitude-frequency and phase-frequency curves of the two frequency like vibration regimes are presented. That curves present the evolution of the first asymptotic approximation of solutions for different non-linear harmonics obtained by changing external excitation frequencies through discrete as well as continuous values. System of the partial differential equations of the transversal oscillations of the sandwich double circular plate system with visco-non-linear elastic layer, excited by external, distributed, along plate surfaces, excitation are derived and approximately solved for various initial conditions and external excitation properties. System of differential equations of the first order with respect to the amplitudes and the corresponding number of the phases in the first asymptotic averaged approximation are derived for different corresponding multi-frequency non-linear vibration regimes. These equations are analytically and numerically considered in the light of the stationary and no stationary resonant regimes, as well as the multi-non-linear free and forced mode mutual interactions, number of the resonant jumps.  相似文献   

10.
11.
Non-linear dynamics of a cracked cantilever beam under harmonic excitation   总被引:1,自引:0,他引:1  
The presence of cracks in a structure is usually detected by adopting a linear approach through the monitoring of changes in its dynamic response features, such as natural frequencies and mode shapes. But these linear vibration procedures do not always come up to practical results because of their inherently low sensitivity to defects. Since a crack introduces non-linearities in the system, their use in damage detection merits to be investigated. With this aim the present paper is devoted to analysing the peculiar features of the non-linear response of a cracked beam.The problem of a cantilever beam with an asymmetric edge crack subjected to a harmonic forcing at the tip is considered as a plane problem and is solved by using two-dimensional finite elements; the behaviour of the breathing crack is simulated as a frictionless contact problem. The modification of the response with respect to the linear one is outlined: in particular, excitation of sub- and super-harmonics, period doubling, and quasi-impulsive behaviour at crack interfaces are the main achievements. These response characteristics, strictly due to the presence of a crack, can be used in non-linear techniques of crack identification.  相似文献   

12.
13.
The non-linear differential equations of motion, and boundary conditions, for Euler-Bernoulli beams able to experience flexure along two principal directions (and, thus, flexure in any direction in space), torsion and extension are formulated. The beam's material is assumed to be Hookean but its properties may vary along its span. The nonlinearities present in the differential equations include contributions from the curvature expression and from inertia terms. A set of differential equations with polynomial nonlinearities to cubic order, suitable for a perturbation analysis of the motion, is also developed and the validity of the inextensional approximation is assessed. The equations developed here reduce to those for an inextensional beam. In Part II of this paper, a specific example of application is analyzed and the results obtained are compared with those available in the literature where several non-linear terms have been neglected a priori.  相似文献   

14.
An elastic section model is proposed to analyze some characteristic issues of the cable-supported bridge dynamics through an equivalent planar multi-body system. The quadratic non-linearities of the four-degree-of-freedom model essentially describe the geometric coupling which may strongly characterize the dynamic interactions of the bridge deck and a pair of identical suspension cables (hangers or stays). The linear modal solution shows that the flexural and torsional modes of the deck (global modes) typically co-exist with symmetric or anti-symmetric modes of the cables (local modes). The combinations of parameters which realize remarkable 2:1:1 internal resonance conditions among one of the global modes (with higher natural frequency) and two local modes (with lower and close natural frequencies) are obtained by virtue of a multiparameter perturbation method. The non-linear response of the resonant systems shows that the global deck motion – directly forced at primary resonance by an external harmonic load – can parametrically excite the local cable motion, when the deck vibration amplitude overcomes the critical value at which a period-doubling bifurcation occurs. The relevant effects of both viscous damping and internal detuning on the instability boundaries are parametrically investigated. All the internal resonance conditions as well as the critical vibration amplitudes are expressed as an explicit, though asymptotically approximate, function of the structural parameters.  相似文献   

15.
We analyze the dynamics of a two-dimensional system constituted by two masses subjected to elastic, gravitational and viscous forces and constrained by a moving frictional mono-lateral surface. The model exhibits a time-varying dynamics capable of reproducing the hopping phenomenon, an unwanted phenomenon observed in many applications such as the motion of a robotic arm on a surface or that of a wiper on a windscreen. The system dynamics, besides being affected by geometrical non-linearities, has a non-smooth nature due to the impact and friction laws involved in the model. The complexity of the resulting equations and of the transition conditions require the problem to be solved numerically. Various periodic motions are found and the effect of varying the system parameters, in particular the friction coefficient, is investigated. Finally, simulations are used to gain some insight the behavior of the windscreen wiper.  相似文献   

16.
This paper discusses the non-linear dynamical response of a shape-memory non-ideal oscillator. The non-ideal excitation originates from a DC electric motor with limited power supply driving an unbalanced rotating mass. The restoring force provided by the shape-memory device is described by a thermomechanical model capable of accounting for the hysteretic behavior via the evolution of a suitable internal variable. The non-linear dynamic response of the system is investigated with the voltage as control parameter. Numerical simulations show the occurrence of regular and quasi-periodic motions, which are investigated via bifurcation diagrams and phase plane portraits. The 0–1 test is used for quantitative characterization of chaotic responses. The computation of basins of attraction points out the strong dependence of the response on small changes of initial conditions, along with meaningful modifications of competing basins with variations of the control parameter. Finally, variations of the mechanical and thermal parameters of the pseudoelastic oscillator are considered, with the aim to evaluating the effects produced by the non-ideal excitation source on the non-linear dynamics of the shape memory device.  相似文献   

17.
We study the resonant dynamics of a two-degree-of-freedom system composed of a linear oscillator weakly coupled to a strongly non-linear one, with an essential (non-linearizable) cubic stiffness non-linearity. For the undamped system this leads to a series of internal resonances, depending on the level of (conserved) total energy of oscillation. We study in detail the 1:1 internal resonance, and show that the undamped system possesses stable and unstable synchronous periodic motions (non-linear normal modes—NNMs), as well as, asynchronous periodic motions (elliptic orbits—EOs). Furthermore, we show that when damping is introduced certain NNMs produce resonance capture phenomena, where a trajectory of the damped dynamics gets ‘captured’ in the neighborhood of a damped NNM before ‘escaping’ and becoming an oscillation with exponentially decaying amplitude. In turn, these resonance captures may lead to passive non-linear energy pumping phenomena from the linear to the non-linear oscillator. Thus, sustained resonance capture appears to provide a dynamical mechanism for passively transferring energy from one part of the system to another, in a one-way, irreversible fashion. Numerical integrations confirm the analytical predictions.  相似文献   

18.
The non-linear dynamic behavior of a novel model of a single-story asymmetric structure under earthquake and harmonic excitations and near two-to-one internal resonance is investigated. The non-linearities of the proposed model, ignored in conventional linear models, are caused by non-linear inertial coupling between translational and torsional degrees of freedom defined in the directions of a non-inertial rotational system of reference, attached to the center of mass of the floor. The multiple scales method is used to achieve approximately linear solutions for the originally non-linear equations near a two-to-one ratio of external and internal resonant conditions. The suitability of the proposed model is justified by the similarity between the simulated response of the non-linear model and the experimental results. The numerical results of time history and frequency domain analyses illustrate the difference between the non-linear and linear models. Energy transfer from a lower natural frequency excited mode to a higher one due to non-linear interaction in the novel model is shown. The effects of amplitude, frequency detuning parameters, uncoupled lateral and torsional frequencies, and damping ratio on the responses are inspected and some non-linear phenomena such as hysteresis, jumping, hardening, and softening are observed.  相似文献   

19.
The aim of this work is to formulate a model for the study of the dynamics of curved beams undergoing large oscillations. In Part 1, the interest was oriented to the formulation of a consistent analytical model and to obtain the equations of motion in weak form. In Part 2, a case-study is considered and the response for various initial curved configurations, obtained by varying the initial curvature, is analyzed. Both the free and the forced problems are considered: the linear free dynamics are studied to detect how the initial configuration affects the modal properties and to enlighten the typical phenomena of frequency coalescence and avoidance; the forced dynamics are then studied for different internal resonance conditions to enlighten the phenomenon of the dynamic instability under a shear periodic tip follower force and to describe the various classes of post-critical motion. The results of experimental tests conducted on a slightly imperfect straight beam prototype are eventually discussed.  相似文献   

20.
Non-linear systems are here tackled in a manner directly inherited from linear ones, that is, by using proper normal modes of motion. These are defined in terms of invariant manifolds in the system's phase space, on which the uncoupled system dynamics can be studied. Two different methodologies which were previously developed to derive the non-linear normal modes of continuous systems — one based on a purely continuous approach, and one based on a discretized approach to which the theory developed for discrete systems can be applied-are simultaneously applied to the same study case-an Euler-Bernoulli beam constrained by a non-linear spring-and compared as regards accuracy and reliability. Numerical simulations of pure non-linear modal motions are performed using these approaches, and compared to simulations of equations obtained by a classical projection onto the linear modes. The invariance properties of the non-linear normal modes are demonstrated, and it is also found that, for a pure non-linear modal motion, the invariant manifold approach achieves the same accuracy as that obtained using several linear normal modes, but with significantly reduced computational cost. This is mainly due to the possibility of obtaining high-order accuracy in the dynamics by solving only one non-linear ordinary differential equation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号