首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Standing waves can cause measurement errors when sound-pressure level (SPL) measurements are performed in a closed ear canal, e.g., during probe-microphone system calibration for distortion-product otoacoustic emission (DPOAE) testing. Alternative calibration methods, such as forward-pressure level (FPL), minimize the influence of standing waves by calculating the forward-going sound waves separate from the reflections that cause errors. Previous research compared test performance (Burke et al., 2010) and threshold prediction (Rogers et al., 2010) using SPL and multiple FPL calibration conditions, and surprisingly found no significant improvements when using FPL relative to SPL, except at 8 kHz. The present study examined the calibration data collected by Burke et al. and Rogers et al. from 155 human subjects in order to describe the frequency location and magnitude of standing-wave pressure minima to see if these errors might explain trends in test performance. Results indicate that while individual results varied widely, pressure variability was larger around 4 kHz and smaller at 8 kHz, consistent with the dimensions of the adult ear canal. The present data suggest that standing-wave errors are not responsible for the historically poor (8 kHz) or good (4 kHz) performance of DPOAE measures at specific test frequencies.  相似文献   

2.
Quantifying ear-canal sound level in forward pressure has been suggested as a more accurate and practical alternative to sound pressure level (SPL) calibrations used in clinical settings. The mathematical isolation of forward (and reverse) pressure requires defining the The?venin-equivalent impedance and pressure of the sound source and characteristic impedance of the load; however, the extent to which inaccuracies in characterizing the source and/or load impact forward pressure level (FPL) calibrations has not been specifically evaluated. This study examined how commercially available probe tips and estimates of characteristic impedance impact the calculation of forward and reverse pressure in a number of test cavities with dimensions chosen to reflect human ear-canal dimensions. Results demonstrate that FPL calibration, which has already been shown to be more accurate than in situ SPL calibration, can be improved particularly around standing-wave null frequencies by refining estimates of characteristic impedance. Better estimates allow FPL to be accurately calculated at least through 10 kHz using a variety of probe tips in test cavities of different sizes, suggesting that FPL calibration can be performed in ear canals of all sizes. Additionally, FPL calibration appears a reasonable option when quantifying the levels of extended high-frequency (10-18 kHz) stimuli.  相似文献   

3.
The purpose of the present study was to determine the effect of primary-tone level variation, L2--L1, on the amplitude of distortion-product otoacoustic emissions (DPOAEs). The DPOAE at the frequency 2f1--f2 (f2 greater than f1) was measured in 20 ears of ten normally hearing subjects. Acoustic distortion products were generated by primaries f1 and f2 with geometric mean frequencies of 1, 2, and 4 kHz. The f2/f1 ratios were 1.25 (1 kHz), 1.23 (2 kHz), and 1.21 (4 kHz). The primary-tone level L1 was kept constant at either 65 or 75 dB SPL while the second primary-tone level L2 was varied between 20 and 90 dB SPL in 5-dB steps. The level differences L2--L1 generating maximal DPOAE amplitudes depended on L1 and on the geometric mean frequency of f1 and f2. There were large interindividual differences. Overall, the L2--L1 evoking maximal mean DPOAE amplitudes was --10 dB for geometric mean frequencies of 1 and 2 kHz with both L1 = 65 dB SPL and L1 = 75 dB SPL. For 4 kHz, L2-L1 was --5 dB with L1 = 65 dB SPL and 0 dB with L1 = 75 dB SPL. The mean slopes of the DPOAE growth functions in the initial linearly increasing portions were steeper at higher stimulus frequencies, increasing from 0.52 at 1 kHz to 0.72 at 4 kHz for L1 = 65 dB SPL and from 0.48 at 1 kHz to 0.72 at 4 kHz for L1 = 75 dB SPL.  相似文献   

4.
Characteristics of distortion product otoacoustic emission (DPOAE) measurements were investigated by comparing responses from two different emission measurement systems in 40 volunteers (78 ears) and making test-retest measurements of each system in 20 ears. For transformation of results between systems, it was shown that the minimum data set consisted of input-output (growth) functions obtained by stepping stimulus levels across a wide range, for each set of stimulus frequencies (1-8 kHz). Linear transformations were considered which involved either recalibration of the emission amplitude (vertical transformation) or of the stimulus levels (horizontal transformation). Horizontal transformations provided better agreement between growth functions from the two systems. For frequencies 4-8 kHz, the means of the horizontal shifts required ranged from 8 to 14 dB, clearly exceeding test-retest variability. The optimal horizontal transformation was derived and applied uniformly to all emission measurements; correlations r=0.81-0.89 were found between transformed emission amplitudes. To minimize the necessity for such transformations and to reduce the variability found both within and between systems, development of standardized equipment and methods is suggested for DPOAE measurements, including: (1) an optimized in-ear probe assembly; (2) use of intensity calibration; and (3) a focus on emission "threshold" measurement and analysis.  相似文献   

5.
Distortion product otoacoustic emission (DPOAE) fine structure has been attributed to the interaction of two cochlear-source mechanisms (distortion and reflection sources). A suppressor presented near the 2f1-f2 frequency reduces the reflection-source contribution and, therefore, DPOAE fine structure. Optimal relationships between stimulus and suppressor conditions, however, have not been described. In this study, the relationship between suppressor level (L3) and stimulus level (L2) was evaluated to determine the L3 that was most effective at reducing fine structure. Subjects were initially screened to find individuals who produced DPOAE fine structure. A difference in the prevalence of fine structure in two frequency intervals was observed. At 2 kHz, 11 of 12 subjects exhibited fine structure, as compared to 5 of 22 subjects at 4 kHz. Only subjects demonstrating fine structure participated in subsequent measurements. DPOAE responses were evaluated in 1/3-octave intervals centered at 2 or 4 kHz, with 4 subjects contributing data at each interval. Multiple L3's were evaluated for each L2, which ranged from 20 to 80 dB SPL. The results indicated that one or more L3's at each L2 were roughly equally effective at reducing DPOAE fine structure. However, no single L3 was effective at all L2's in every subject.  相似文献   

6.
Both distortion product otoacoustic emissions (DPOAEs) and auditory steady-state responses (ASSRs) provide frequency-specific assessment of hearing. However, each method suffers from some restrictions. Hearing losses above 50 dB HL are not quantifiable using DPOAEs and their performance at frequencies below 1 kHz is limited, but their recording time is short. In contrast, ASSRs are a time-consuming method but have the ability to determine hearing thresholds in a wider range of frequencies and hearing losses. Thus, recording DPOAEs and ASSRs simultaneously at their adequate frequencies and levels could decrease the overall test time considerably. The goal of the present study was to develop a parameter-setting and test-protocol to measure DPOAEs and ASSRs binaurally and simultaneously at multiple frequencies. Ten normal-hearing and 23 hearing-impaired subjects participated in the study. The interaction of both responses when stimulated simultaneously at frequencies between 0.25 and 6 kHz was examined. Two limiting factors need to be kept. Frequency distance between ASSR carrier frequency f(c) and DPOAE primary tone f(2) needs to be at least 1.5 octaves, and DPOAEs may not be measured if the ASSR stimulus level is 70 dB SPL or above. There was a significant correlation between pure-tone and DPOAE/ASSR-thresholds in sensorineural hearing loss ears.  相似文献   

7.
Recently, Boege and Janssen [J. Acoust. Soc. Am. 111, 1810-1818 (2002)] fit linear equations to distortion product otoacoustic emission (DPOAE) input/output (UO) functions after the DPOAE level (in dB SPL) was converted into pressure (in microPa). Significant correlations were observed between these DPOAE thresholds and audiometric thresholds. The present study extends their work by (1) evaluating the effect of frequency, (2) determining the behavioral thresholds in those conditions that did not meet inclusion criteria, and (3) including a wider range of stimulus levels. DPOAE I/O functions were measured in as many as 278 ears of subjects with normal and impaired hearing. Nine f2 frequencies (500 to 8000 Hz in 1/2-octave steps) were used, L2 ranged from 10 to 85 dB SPL (5-dB steps), and L1 was set according to the equation L1 = 0.4L2 + 39 dB [Kummer et al., J. Acoust. Soc. Am. 103, 3431-3444 (1998)] for L2 levels up to 65 dB SPL, beyond which L1 = L2. For the same conditions as those used by Boege and Janssen, we observed a frequency effect such that correlations were higher for mid-frequency threshold comparisons. In addition, a larger proportion of conditions not meeting inclusion criteria at mid and high frequencies had hearing losses exceeding 30 dB HL, compared to lower frequencies. These results suggest that DPOAE I/O functions can be used to predict audiometric thresholds with greater accuracy at mid and high frequencies, but only when certain inclusion criteria are met. When the SNR inclusion criterion is not met, the expected amount of hearing loss increases. Increasing the range of input levels from 20-65 dB SPL to 10-85 dB SPL increased the number of functions meeting inclusion criteria and increased the overall correlation between DPOAE and behavioral thresholds.  相似文献   

8.
Distortion-product otoacoustic emissions (DPOAEs) were used to describe suppression growth in normal-hearing humans. Data were collected at eight f(2) frequencies ranging from 0.5 to 8 kHz for L(2) levels ranging from 10 to 60 dB sensation level. For each f(2) and L(2) combination, suppression was measured for nine or eleven suppressor frequencies (f(3)) whose levels varied from -20 to 85 dB sound pressure level (SPL). Suppression grew nearly linearly when f(3) ≈ f(2), grew more rapidly for f(3)?< f(2), and grew more slowly for f(3)?> f(2). These results are consistent with physiological and mechanical data from lower animals, as well as previous DPOAE data from humans, although no previous DPOAE study has described suppression growth for as wide a range of frequencies and levels. These trends were evident for all f(2) and L(2) combinations; however, some exceptions were noted. Specifically, suppression growth rate was less steep as a function of f(3) for f(2) frequencies ≤ 1 kHz. Thus, despite the qualitative similarities across frequency, there were quantitative differences related to f(2), suggesting that there may be subtle differences in suppression for frequencies above 1 kHz compared to frequencies below 1 kHz.  相似文献   

9.
DPOAE sources are modeled by intermodulation distortion generated near the f2 place and a reflection of this distortion near the DP place. In a previous paper, inverse fast Fourier transforms (IFFTs) of DPOAE filter functions in normal ears were consistent with this model [Konrad-Martin et al., J. Acoust. Soc. Am. 109, 2862-2879 (2001)]. In the present article, similar measurements were made in ears with specific hearing-loss configurations. It was hypothesized that hearing loss at f2 or DP frequencies would influence the relative contributions to the DPOAE from the corresponding basilar membrane places, and would affect the relative magnitudes of SFOAEs at frequencies equal to f2 and fDP. DPOAEs were measured with f2 = 4 kHz, f1 varied, and a suppressor near fDP. L2 was 25-55 dB SPL (L1 = L2 + 10 dB). SFOAEs were measured at f2 and at 2.7 kHz (the average fDP produced by the f1 sweep) for stimulus levels of 20-60 dB SPL. SFOAE results supported predictions of the pattern of amplitude differences between SFOAEs at 4 and 2.7 kHz for sloping losses, but did not support predictions for the rising- and flat-loss categories. Unsuppressed IFFTs for rising losses typically had one peak. IFFTs for flat or sloping losses typically have two or more peaks; later peaks were more prominent in ears with sloping losses compared to normal ears. Specific predictions were unambiguously supported by the results for only four of ten cases, and were generally supported in two additional cases. Therefore, the relative contributions of the two DPOAE sources often were abnormal in impaired ears, but not always in the predicted manner.  相似文献   

10.
Given that high-frequency hearing is most vulnerable to cochlear pathology, it is important to characterize distortion-product otoacoustic emissions (DPOAEs) measured with higher-frequency stimuli in order to utilize these measures in clinical applications. The purpose of this study was to explore the dependence of DPOAE amplitude on the levels of the evoking stimuli at frequencies greater than 8 kHz, and make comparisons with those data that have been extensively measured with lower-frequency stimuli. To accomplish this, DPOAE amplitudes were measured at six different f2 frequencies (2, 5, 10, 12, 14, and 16 kHz), with a frequency ratio (f2/f1) of 1.2, at five fixed levels (30 to 70 dB SPL) of one primary (either f1 or f2), while the other primary was varied in level (30 to 70 dB SPL). Generally, the level separation between the two primary tones (L1 > L2) generating the largest DPOAE amplitude (referred to as the "optimal level separation") decreased as the level of the fixed primary increased. Additionally, the optimal level separation was frequency dependent, especially at the lower fixed primary tone levels ( < or = 50 dB SPL). In agreement with previous studies, the DPOAE level exhibited greater dependence on L1 than on L2.  相似文献   

11.
Evidence of the compressive growth of basilar-membrane displacement can be seen in distortion-product otoacoustic emission (DPOAE) levels measured as a function of stimulus level. When the levels of the two stimulus tones (f1 and f2) are related by the formula L1 = 39 dB + 0.4 x L2 [Kummer et al., J. Acoust. Soc. Am. 103, 3431-3444 (1998)] the shape of the function relating DPOAE level to L2 is similar (up to an L2 of 70 dB SPL) to the classic Fletcher and Munson [J. Acoust. Soc. Am. 9, 1-10 (1933)] loudness function when plotted on a logarithmic scale. Explicit estimates of compression have been derived based on recent DPOAE measurements from the laboratory. If DPOAE growth rate is defined as the slope of the DPOAE I/O function (in dB/dB), then a cogent definition of compression is the reciprocal of the growth rate. In humans with normal hearing, compression varies from about 1 at threshold to about 4 at 70 dB SPL. With hearing loss, compression is still about 1 at threshold, but grows more slowly above threshold. Median DPOAE I/O data from ears with normal hearing, mild loss, and moderate loss are each well fit by log functions. When the I/O function is logarithmic, then the corresponding compression is a linear function of stimulus level. Evidence of cochlear compression also exists in DPOAE suppression tuning curves, which indicate the level of a third stimulus tone (f3) that reduces DPOAE level by 3 dB. All three stimulus tones generate compressive growth within the cochlea; however, only the relative compression (RC) of the primary and suppressor responses is observable in DPOAE suppression data. An RC value of 1 indicates that the cochlear responses to the primary and suppressor components grow at the same rate. In normal ears, RC rises to 4, when f3 is an octave below f2. The similarities between DPOAE and loudness compression estimates suggest the possibility of predicting loudness growth from DPOAEs; however, intersubject variability makes such predictions difficult at this time.  相似文献   

12.
A maximum auditory steady-state response (ASSR) amplitude is yielded when the ASSR is elicited by an amplitude-modulated tone (f(c)) with a fixed modulation frequency (f(m) = 40 Hz), whereas the maximum distortion product otoacoustic emission (DPOAE) level is yielded when the DPOAE is elicited using a fixed frequency ratio of the primary tones (f2/f1 = 1.2). When eliciting the DPOAE and ASSR by the same tone pair, optimal stimulation is present for either DPOAE or ASSR and thus adequate simultaneous DPOAE/ASSR measurement is not possible across test frequency f2 or f(c), respectively. The purpose of the present study was to determine whether the ASSR and DPOAE can be measured simultaneously without notable restrictions using a DPOAE stimulus setting in which one primary tone is amplitude modulated. A DPOAE of frequency 2f1-f2 and ASSR of modulation frequency 41 Hz were measured in ten normal hearing subjects at a test frequency between 0.5 and 8 kHz (f2 = f(c)). The decrease in the DPOAE level and the loss in ASSR amplitude during hybrid mode stimulation amounted, on average, to only 2.60 dB [standard deviation (SD) = 1.38 dB] and 1.83 dB (SD = 2.38 dB), respectively. These findings suggest simultaneous DPOAE and ASSR measurements to be feasible across all test frequencies when using a DPOAE stimulus setting where the primary tone f2 is amplitude modulated.  相似文献   

13.
The reliability of distortion-product otoacoustic emission (DPOAE) measurements and their relation to loudness measurements was examined in 16 normal-hearing subjects and 58 subjects with hearing loss. The level of the distortion product (L(d)) was compared across two sessions and resulted in correlations that exceeded 0.90. The reliability of DPOAEs was less when parameters from nonlinear fits to the input/output (I/O) functions were compared across visits. Next, the relationship between DPOAE I/O parameters and the slope of the low-level portion of the categorical loudness scaling (CLS) function (soft slope) was assessed. Correlations of 0.65, 0.74, and 0.81 at 1, 2, and 4 kHz were observed between CLS soft slope and combined DPOAE parameters. Behavioral threshold had correlations of 0.82, 0.83, and 0.88 at 1, 2, and 4 kHz with CLS soft slope. Combining DPOAEs and behavioral threshold provided little additional information. Lastly, a multivariate approach utilizing the entire DPOAE I/O function was used to predict the CLS rating for each input level (dB SPL). Standard error of the estimate when using this method ranged from 2.4 to 3.0 categorical units (CU), suggesting that DPOAE I/O functions can predict CLS measures within the CU step size used in this study (5).  相似文献   

14.
The greatest difference in distortion product otoacoustic emission (DPOAE) suppression tuning curves (STCs) in infant and adult ears occurs at a stimulus frequency of 6 kHz. These infant and adult STCs are much more similar when constructed using the absorbed power level of the stimulus and suppressor tones rather than using sound pressure level. This procedure incorporates age-related differences in forward and reverse transmission of sound power through the ear canal and middle ear. These results support the theory that the cochlear mechanics underlying DPOAE suppression are substantially mature in full-term infants.  相似文献   

15.
Using an audiometer,the effect of the noise level upon temporarythreshold shift(TTS)for five trained normal subjects(left ear only)was studied.The measurements were carried out after 6 min exposure(in third octave band)for different sound pressure levels ranging between 75-105 dB at three test fre-quencies 2,3,and 4 kHz.The results indicated that at exposure to noise of soundpressure level(SPL)above 85 dB,TTS increases linearly with ths SPL for all thetest frequencies.The work had extended to study the recovery curves for the sameears.The results indicated that the reduction in TTS on doubling the recoverytimes,for the two sound pressure levels 95 dB and 105 dB,occurs at a rate of near-ly 3 dB.The comparison of the recovery curve at 3 kHz with that calculated usingWard's general equation for recovery was made.Finally,to study the values ofTTS produced by exposure to certain noise at different test frequencies,distribu-tion curves for two recovery times were plotted representing TTS values,for anexposure  相似文献   

16.
A detailed measurement of distortion product otoacoustic emission (DPOAE) fine structure was used to extract estimates of the two major components believed to contribute to the overall DPOAE level in the ear canal. A fixed-ratio paradigm was used to record DPOAE fine structure from three normal-hearing ears over a range of 400 Hz for 12 different stimulus-frequency ratios between 1.053 and 1.36 and stimulus levels between 45 and 75 dB SPL. Inverse Fourier transforms of the amplitude and phase data were filtered to extract the early component from the generator region of maximum stimulus overlap and the later component reflected from the characteristic frequency region of the DPOAE. After filtering, the data were returned to the frequency domain to evaluate the impact of the stimulus-frequency ratio and stimulus level on the relative levels of the components. Although there were significant differences between data from different ears some consistent patterns could be detected. The component from the overlap region of the stimulus tones exhibits a bandpass shape, with the maximum occurring at a ratio of 1.2. The mean data from the DPOAE characteristic frequency region also exhibits a bandpass shape but is less sharply tuned and exhibits greater variety across ears and stimulus levels. The component from the DPOAE characteristic frequency region is dominant at ratios narrower than approximately 1.1 (the transition varies between ears). The relative levels of the two components are highly variable at ratios greater than 1.3 and highly dependent on the stimulus level. The reflection component is larger at all ratios at the lowest stimulus level tested (45/45 dB SPL). We discuss the factors shaping DPOAE-component behavior and some cursory implications for the choice of stimulus parameters to be used in clinical protocols.  相似文献   

17.
DPOAE input/output (I/O) functions were measured at 7f2 frequencies (1 to 8 kHz; f2/f1 = 1.22) over a range of levels (-5 to 95 dB SPL) in normal-hearing and hearing-impaired human ears. L1-L2 was level dependent in order to produce the largest 2f1-f2 responses in normal ears. System distortion was determined by collecting DP data in six different acoustic cavities. These data were used to derive a multiple linear regression model to predict system distortion levels. The model was tested on cochlear-implant users and used to estimate system distortion in all other ears. At most but not all f2's, measurements in cochlear implant ears were consistent with model predictions. At all f2 frequencies, the ears with normal auditory thresholds produced I/O functions characterized by compressive nonlinear regions at moderate levels, with more rapid growth at low and high stimulus levels. As auditory threshold increased, DPOAE threshold increased, accompanied by DPOAE amplitude reductions, notably over the range of levels where normal ears showed compression. The slope of the I/O function was steeper in impaired ears. The data from normal-hearing ears resembled direct measurements of basilar membrane displacement in lower animals. Data from ears with hearing loss showed that the compressive region was affected by cochlear damage; however, responses at high levels of stimulation resembled those observed in normal ears.  相似文献   

18.
A new method for direct pure-tone threshold estimation from input/output functions of distortion product otoacoustic emissions (DPOAEs) in humans is presented. Previous methods use statistical models relating DPOAE level to hearing threshold including additional parameters e.g., age or slope of DPOAE I/O-function. Here we derive a DPOAE threshold from extrapolated DPOAE I/O-functions directly. Cubic 2 f1-f2 distortion products and pure-tone threshold at f2 were measured at 51 frequencies between f2=500 Hz and 8 kHz at up to ten primary tone levels between L2=65 and 20 dB SPL in 30 normally hearing and 119 sensorineural hearing loss ears. Using an optimized primary tone level setting (L1 = 0.4L2 + 39 dB) that accounts for the nonlinear interaction of the two primaries at the DPOAE generation site at f2, the pressure of the 2 f1-f2 distortion product pDP is a linear function of the primary tone level L2. Linear regression yields correlation coefficients higher than 0.8 in the majority of the DPOAE I/O-functions. The linear behavior is sufficiently fulfilled for all frequencies in normal and impaired hearing. This suggests that the observed linear functional dependency is quite general. Extrapolating towards pDP=0 yields the DPOAE threshold for L2. There is a significant correlation between DPOAE threshold and pure-tone threshold (r=0.65, p<0.001). Thus, the DPOAEs that reflect the functioning of an essential element of peripheral sound processing enable a reliable estimation of cochlear hearing threshold up to hearing losses of 50 dBHL without any statistical data.  相似文献   

19.
Distortion product otoacoustic emissions (DPOAEs) and basilar membrane (BM) vibration were measured simultaneously in the 6-9 kHz region of chinchilla cochleae. BM-Input-Output functions in a two-tone paradigm behaved similarly to DPOAEs for the 2f1-f2 component, nonmonotonic growth with the intensity of the lower frequency primary and a notch in the functions around 60 dB SPL. Ripples in frequency functions occur in both BM and OAE curves as a function of the distortion frequency. Optimum f2/f1 ratios for DPOAE generation are near 1.2. The slope of phase curves indicates that for low f2f1(<1.1) the emission source is the place location while for f2f1>1.1 the relative constancy of the phase function suggests that the place is the nonlinear region of f2, i.e., the wave location. Magnitudes of the DPOAEs increase rapidly above 60 dB SPL suggesting a different source or mechanism at high levels. This is supported by the observation that the high level DPOAE and BM-DP responses remain for a considerable period postmortem.  相似文献   

20.
This study compared the reliability of a recently developed high-frequency audiometer (HFA) [Stevens et al., J. Acoust. Soc. Am. 81, 470-484 (1987)] with a less complicated system that uses supraaural earphones (Koss system). The new approach permits calibration on an individual basis, making it possible to express thresholds at high frequencies in dB SPL. Data obtained from 50 normal-hearing subjects, ranging in age from 10-60 years, were used to evaluate the effects on reliability of threshold variance, earpiece/earphone fitting variance, and the variance associated with the HFA calibration process. Without earpiece/earphone replacement, the reliability of thresholds for the two systems is similar. With replacement, the HFA showed poorer reliability than the Koss system above 11 kHz, largely due to errors in estimating the calibration function. HFA reliability is greater for subjects with valid calibration functions over the entire frequency range. When average correction factors are applied to the Koss data in an effort to convert threshold estimates to dB SPL, individual transfer functions are not represented accurately. Thus the benefit of being able to express thresholds at high frequencies in dB SPL must be weighed against the additional source of variability introduced by the HFA calibration process.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号