首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The effect of atomic alignment on CN (B2Sigma+) formation has been studied in the reaction of oriented Ar (3P2) with (CX3CN)2 (X = H, D). The reaction cross-section for each magnetic M'(J) substate in the collision frame sigma|M'(J)|(H(D),d) relative to the cross-section sigma0(H,m) in the CH(3)CN reaction was determined to be sigma0(H,d)/sigma|1|(H,d)/sigma|2|(H,d)/sigma0(D,d)/sigma|1|(D,d):/sigma|2|(D,d)= 0.87/1.00/0.98/1.58/1.93/1.78. A notable deuterium isotope effect was observed. In contrast with the monomer reactions, a significant decrease of sigma0(H(D),d) relative to the other cross-sections of sigma|M'(J)|(H(D),d) was observed.  相似文献   

2.
In the Maugis-Dugdale model of the adhesive contact of elastic spheres, the step cohesive stress sigma(0) is arbitrarily chosen to be the theoretical stress sigma(th) to match that of the Lennard-Jones potential. An alternative and more reasonable model is proposed in this paper. The Maugis model is first extended to that of arbitrary axisymmetric elastic objects with an arbitrary surface adhesive interaction and then applied to the case of a power-law shape function and a step cohesive stress. A continuous transition is found in the extended Maugis-Dugdale model for an arbitrary shape index n. A three-dimensional Johnson-Greenwood adhesion map is constructed. A relation of the identical pull-off force at the rigid limit is required for the approximate and exact models. With this requirement, the stress sigma(0) is found to be k(n)Deltagamma/z(0), where k(n) is a coefficient, Deltagamma the work of adhesion, and z(0) the equilibrium separation. Hence we have sigma(0) = 0.588Deltagamma/z(0), especially for n=2. The prediction of the pull-off forces using this new value shows surprisingly better agreement with the Muller-Yushchenko-Derjaguin transition than that using sigma(th) = 1.026Deltagamma/z(0), and this is true for other values of shape index n.  相似文献   

3.
A three-dimensional time-dependent quantum mechanical wave packet approach is used to calculate reaction probability (P(R)) and integral reaction cross section (sigma(R)) values for both the channels of the reaction He + HD(+) (v = 1; j = 0, 1, 2, 3) --> HeH(D)(+) + D(H), over a range of translational energy (E(trans)) on the McLaughlin-Thompson-Joseph-Sathyamurthy (MTJS) potential energy surface using centrifugal sudden approximation for nonzero total angular momentum (J) values. The reaction probability plots as a function of translational energy for different J values exhibit several oscillations, which are characteristic of the system. It is shown that HeH(+) is preferred over HeD(+) for large J values and that HeD(+) is preferred over HeH(+) for small J values for all the rotational (j) states studied. The integral reaction cross section for both the channels and therefore the isotopic branching ratio for the reaction depend strongly on j in contrast to the marginal dependence shown by earlier QCT calculations. The computed results are in overall agreement with the available experimental results.  相似文献   

4.
The photoinduced hydrogen (or deuterium) detachment reaction of thiophenol (C(6)H(5)SH) or thiophenol-d(1) (C(6)H(5)SD) pumped at 243 nm has been investigated using the H (D) ion velocity map imaging technique. Photodissociation products, corresponding to the two distinct and anisotropic rings observed in the H (or D) ion images, are identified as the two lowest electronic states of phenylthiyl radical (C(6)H(5)S). Ab initio calculations show that the singly occupied molecular orbital of the phenylthiyl radical is localized on the sulfur atom and it is oriented either perpendicular or parallel to the molecular plane for the ground (B(1)) and the first excited state (B(2)) species, respectively. The experimental energy separation between these two states is 2600+/-200 cm(-1) in excellent agreement with the authors' theoretical prediction of 2674 cm(-1) at the CASPT2 level. The experimental anisotropy parameter (beta) of -1.0+/-0.05 at the large translational energy of D from the C(6)H(5)SD dissociation indicates that the transition dipole moment associated with this optical transition at 243 nm is perpendicular to the dissociating S-D bond, which in turn suggests an ultrafast D+C(6)H(5)S(B(1)) dissociation channel on a repulsive potential energy surface. The reduced anisotropy parameter of -0.76+/-0.04 observed at the smaller translational energy of D suggests that the D+C(6)H(5)S(B(2)) channel may proceed on adiabatic reaction paths resulting from the coupling of the initially excited state to other low-lying electronic states encountered along the reaction coordinate. Detailed high level ab initio calculations adopting multireference wave functions reveal that the C(6)H(5)S(B(1)) channel may be directly accessed via a (1)(n(pi),sigma(*)) photoexcitation at 243 nm while the key feature of the photodissociation dynamics of the C(6)H(5)S(B(2)) channel is the involvement of the (3)(n(pi),pi(*))-->(3)(n(sigma),sigma(*)) profile as well as the spin-orbit induced avoided crossing between the ground and the (3)(n(pi),sigma(*)) state. The S-D bond dissociation energy of thiophenol-d(1) is accurately estimated to be D(0)=79.6+/-0.3 kcalmol. The S-H bond dissociation energy is also estimated to give D(0)=76.8+/-0.3 kcalmol, which is smaller than previously reported ones by at least 2 kcalmol. The C-H bond of the benzene moiety is found to give rise to the H fragment. Ring opening reactions induced by the pi-pi(*)n(pi)-pi(*) transitions followed by internal conversion may be responsible for the isotropic broad translational energy distribution of fragments.  相似文献   

5.
An analysis of 17O carbonyl chemical shifts of 50 substituted benzaldehydes leads to an empirical equation, delta(cal)(17O) = 564.0 + (sigma)(delta)o + (sigma)(delta)m + (sigma)(delta)p + C, for calculating 17O chemical shifts. This equation is based on a linear regression analysis using 11 substituent parameters and leads to good conformity with the expected data.  相似文献   

6.
Steric effect for N2(C,3Piu) formation in the energy transfer reaction of Ar(3P2)+N2 was directly measured by using an oriented Ar(3P2,MJ=2) beam at a collision energy of 0.06 eV. The N2(C,3Piu) chemiluminescence intensity was measured as a function of the magnetic orientation field direction in the collision frame. A significant alignment effect on the energy transfer probability was observed. The relative reactivity for each magnetic substate in the collision frame sigma|MJ'|was determined to be sigma|2|:sigma|1|:sigma(0)=0.50:0.60:1.00. It is suggested that the observed steric effect is primarily due to the favorable configuration of the 3p orbital for the efficient overlap with the 2sigma(u) molecular orbital of N(2).  相似文献   

7.
[reaction: see text] Electrochemical oxidation of meta-substituted diphenylmethylidenefluorenes (3a-g) results in the formation of fluorenylidene dications that are shown to be antiaromatic through calculation of the nucleus independent chemical shift (NICS) for the 5- and 6-membered rings of the fluorenyl system. There is a strong linear correlation between the redox potential for the dication and both the calculated NICS and sigma(m). Redox potentials for formation of dications of analogously substituted tetraphenylethylenes shows that, with the exception of the p-methyl derivative, the redox potentials for these dications are less positive than for formation of the dications of 3a-g and for dications of p-substituted diphenylmethylidenefluorenes, 2a-g. The greater instability of dications of 2a-g and 3a-g compared to the reference system implies their antiaromaticity, which is supported by the positive NICS values. The redox potentials for formation of the dications of meta-substituted diphenylmethylidenes (3a-g) are more positive than for the formation of dications of para-substituted diphenylmethylidenes (2a-g), indicating their greater thermodynamic instability. The NICS values for dications of 3a-g are more antiaromatic than for dications of 2a-g, which is consistent with their greater instability of the dications of 3a-g. Although the substituted diphenylmethyl systems are not able to interact with the fluorenyl system through resonance because of their geometry, they are able to moderate the antiaromaticity of the fluorenyl cationic system. Two models have been suggested for this interaction, sigma to p donation and the ability of the charge on the substituted ring system to affect delocalization. Examination of bond lengths shows very limited variation, which argues against sigma to p donation in these systems. A strong correlation between NICS and sigma constants suggests that factors that affect the magnitude of the charge on the benzylic (alpha) carbon of the diphenylmethyl cation affect the antiaromaticity of the fluorenyl cation. Calculated atomic charges on carbons 1-8 and 10-13 show an increase in positive charge, and therefore greater delocalization of charge in the fluorenyl system, with increasing electronegativity of the substituent. The change in the amount of positive charge correlated strongly with NICS, supporting the model in which the amount of delocalization of charge is related to the antiaromaticity of the species. Thus, both aromatic and antiaromatic species are characterized by extensive delocalization of electron density.  相似文献   

8.
A three-dimensional time-dependent quantum mechanical approach is used to calculate the reaction probability (P(R)) and the integral reaction cross section (sigma(R)) for both channels of the reaction He + HD+(v = 0, 1, 2, 3; j = 0) --> HeH(D)+ + D(H), over a range of translational energy (E(trans)) on two different ab initio potential energy surfaces (McLaughlin-Thompson-Joseph-Sathyamurthy and Palmieri et al.). The reaction probability plots as a function of translational energy exhibit several oscillations, which are characteristic of the system. The vibrational enhancement of the reaction probability and the integral reaction cross section values are reproduced qualitatively by our calculations, in accordance with the experimental results. The isotopic branching ratio for the reaction decreases in going from v = 0 to v = 1 and then becomes nearly v-independent in going from v = 1 to v =3 on both the surfaces.  相似文献   

9.
The influence of the solvent on the structure and IR spectrum of the [Fe(CN)(5)NO](2)(-) ion is investigated by using gradient corrected density functional theory. IR spectra are also measured on different solvents and the results obtained are compared with the predicted ones. We have treated the solvent effects with a continuum model, based on the Onsager's reaction field approach; in order to mimic strong specific interactions, calculations were also performed on the complex protonated at the cyanide trans to the nitrosyl group. The reaction field calculations predict only qualitatively the most important observed trends, e.g., the shifts in the nitrosyl stretching wavenumber, but fail in accounting quantitatively for the differences between the spectra in water and acetonitrile. The possible role of specific interactions is consistently accounted for by interpreting the experimental shifts of the NO stretching wavenumber nu(NO), as well as the visible absorption energies, when changing the Lewis acidity of the solvent, as measured by the Gutmann's acceptor number. Ligand population analysis was performed to relate the solvent effects with the sigma donor and pi acceptor behavior of cyanide and nitrosyl ligands. The significance of nu(NO) shifts as a result of changes in the medium is discussed in view of the physiological relevance of transition-metal nitrosyl chemistry.  相似文献   

10.
11.
12.
Previous work investigating the dependence of self-diffusivity, D, on the size of the guest diffusing within the porous solid such as zeolite has reported the existence of an anomalous maximum in the diffusion coefficient (J. Phys. Chem. 1994, 98, 6368). Two distinct regimes of dependence of D on sigma(gg), diameter of the guest were reported. D proportional to 1/sigma(gg)2, often referred to as linear regime (LR), is found when sigma(gg) is smaller than sigma(v), the diameter of the void. A maximum in D has been observed when sigma(gg) is comparable to sigma(v) and this regime is referred to as anomalous regime (AR). Here we report the intermediate scattering function for a particle from LR and AR in zeolite faujasite. A particle from LR exhibits a biexponential decay while a particle from AR exhibits a single-exponential decay at small k. Variation with k of the full width at half-maximum of the self-part of the dynamic structure factor is nonmonotonic for a particle in the linear regime. In contrast, this variation is monotonic for a particle in the anomalous regime. These results can be understood in terms of the existence of energetic barrier at the bottleneck, the 12-ring window, in the path of diffusion. They provide additional signatures for the linear regime and anomalous regimes and therefore for levitation effect (LE).  相似文献   

13.
14.
New experimental energy levels for the 2pπC(1)Π(u)(-) state of D(2) are reported extending up to the dissociation limit and including rotational quantum numbers up to N = 10. These data are extracted from recent high resolution optical emission spectra, and they are used for a detailed comparison of two theoretical approaches, both of which are fully ab initio and are based on the same state-of-the-art clamped-nuclei potential energy curves. These are the coupled differential equations (CE) and the multichannel quantum defect theory (MQDT) approaches, each of which accounts for adiabatic corrections and non-adiabatic couplings. Both theoretical approaches reproduce the experimental levels to within a fraction of a wavenumber unit (cm(-1)) for the lower vibrational quantum numbers, with the MQDT surpassing the CE method. As the dissociation limit is approached, the residuals observed-calculated increase up to several cm(-1) and the MQDT method is up to a factor of two less accurate than the CE method. The same analysis is carried out with existing data for the H(2) isotopomer and yields similar results. An analogous comparison is also made for the 3pπD(1)Π(u)(-) and 4pπD('1)Π(u)(-) states for both isotopomers, where the MQDT is found to be superior to the CE approach.  相似文献   

15.
In this paper we investigate theoretically the effect of an external electric field on the rate constant of steady-state bulk diffusion-controlled reactions. We generalize previously derived results for isotropic diffusion in the absence of interparticle interaction [J. Chem. Phys. 87, 4622 (1987)] to the case where translational diffusion is anisotropic. A frequently occurring situation of transverse isotropy where D(x)=D(y) not equal to D(z) is considered in detail. We derive the first-order expansion for the reaction rate constant in terms of the electric field strength E, k(E)=k(0) (1+1/2epsilongamma), where gamma=k(0)/4piRD( perpendicular ), epsilon=qER/k(B)T, q is the charge, R is the contact distance, and D( perpendicular ) is the transverse diffusion coefficient. Numerical calculations show that this first-order expansion works well in the whole range of applicability of the Nernst-Einstein relation, i.e., for epsilon<1.  相似文献   

16.
A natural bonding orbital (NBO) analysis of phosphate bonding and connection to experimental phosphotransfer potential is presented. Density functional calculations with the 6-311++G(d,p) basis set carried out on 10 model phosphoryl compounds verify that the wide variability of experimental standard free energies of hydrolysis (a phosphotransfer potential benchmark) is correlated with the instability of the scissile O-P bond through computed bond lengths. NBO analysis is used to analyze all delocalization interactions contributing to O-P bond weakening. Phosphoryl bond lengths are found to correlate strongest (R = 0.90) with the magnitude of the ground-state n(O) --> sigma*(O-P) anomeric effect. Electron-withdrawing interactions of the substituent upon the sigma(O-P) bonding orbital also correlate strongly with O-P bond lengths (R = 0.88). However, an analysis of sigma*(O-P) and sigma(O-P) populations show that the increase in sigma*(O-P) density is up to 6.5 times greater than the decrease in sigma(O-P) density. Consequently, the anomeric effect is more important than other delocalization interactions in impacting O-P bond lengths. Factors reducing anomeric power by diminishing either lone pair donor ability (solvent) or antibonding acceptor ability (substituent) are shown to result in shorter O-P bond lengths. The trends shown in this work suggest that the generalized anomeric effect provides a simple explanation for relating the sensitivity of the O-P bond to diverse environmental and substituent factors. The anomeric n(O) --> sigma*(O-P) interaction is also shown to correlate strongly with experimentally determined standard free energies of hydrolysis (R = -0.93). A causal mechanism cannot be inferred from correlation. Equally, a P-value of 1.2 x 10(-4) from an F-test indicates that it is unlikely that the ground-state anomeric effect and standard free energies of hydrolysis are coincidentally related. It is found that as the exothermicity of hydrolysis increases, the energy stabilization of the ground-state anomeric effect increases with selective destabilization of the high-energy O-P bond to be broken in hydrolysis. The anomeric effect therefore partially counteracts a larger resonance stabilization of products that makes hydrolysis exothermic and needs to be considered in achieving improved agreement between calculated and empirical energies of hydrolysis. The avenues relating the thermodynamic behavior of phosphates to underlying structural factors via the anomeric effect are discussed.  相似文献   

17.
The reaction of dimethylthio- (1) and ethylenedithio-tetrathiafulvalenothioquinone-1,3-dithiolemethides (2) with CuBr2 gave 1:1 complexes between the donors and CuBr2, 1.CuBr2 and 2.CuBr2, in which the Cu atom of CuBr2 binds to the thiocarbonyl S atom in 1 and 2. The electrical conductivity (sigma) of 1.CuBr2 at room temperature was ca. 10(-5) S cm-1, while a comparatively high value of 4.0 S cm-1 was obtained for 2.CuBr2, whose temperature dependence of sigma exhibited, however, semiconducting behavior with a very small activation energy of 0.18 eV. The observed paramagnetic susceptibilities (chi p's) of the Cu complexes were composed of both a component due to the localized Cu spins obeying the Curie-Weiss law and a temperature-independent chi p due to the conducting pi electrons on the 1- or 2-stacked columns. From the Curie constants obtained, the degrees of intramolecular electron transfer from 1 and 2 to CuBr2 moieties were estimated at ca. 90% and 60%, respectively. The small, negative Weiss temperature suggest very weak antiferromagnetic interactions among the Cu spins on the CuBr2 moieties.  相似文献   

18.
The reliability of kinetic substrate quantification by nonlinear fitting of the enzyme reaction curve to the integrated Michaelis-Menten equation was investigated by both simulation and preliminary experimentation. For simulation, product absorptivity epsilon was 3.00 mmol(-1) L cm(-1) and K(m) was 0.10 mmol L(-1), and uniform absorbance error sigma was randomly inserted into the error-free reaction curve of product absorbance A(i) versus reaction time t(i) calculated according to the integrated Michaelis-Menten equation. The experimental reaction curve of arylesterase acting on phenyl acetate was monitored by phenol absorbance at 270 nm. Maximal product absorbance A(m) was predicted by nonlinear fitting of the reaction curve to Eq. (1) with K(m) as constant. There were unique A(m) for best fitting of both the simulated and experimental reaction curves. Neither the error in reaction origin nor the variation of enzyme activity changed the background-corrected value of A(m). But the range of data under analysis, the background absorbance, and absorbance error sigma had an effect. By simulation, A(m) from 0.150 to 3.600 was predicted with reliability and linear response to substrate concentration when there was 80% consumption of substrate at sigma of 0.001. Restriction of absorbance to 0.700 enabled A(m) up to 1.800 to be predicted at sigma of 0.001. Detection limit reached A(m) of 0.090 at sigma of 0.001. By experimentation, the reproducibility was 4.6% at substrate concentration twice the K(m), and A(m) linearly responded to phenyl acetate with consistent absorptivity for phenol, and upper limit about twice the maximum of experimental absorbance. These results supported the reliability of this new kinetic method for enzymatic analysis with enhanced upper limit and precision.  相似文献   

19.
The photoinduced hydrogen-elimination reaction in pyrrole via the conical intersections of the two (1)pi sigma(*) excited states with the electronic ground states [(1)B(1)(pi sigma(*))-S(0) and (1)A(2)(pi sigma(*))-S(0)] have been investigated by time-dependent quantum wave-packet calculations. Model potential-energy surfaces of reduced dimensionality have been constructed on the basis of accurate multireference ab initio electronic-structure calculations. For the (1)B(1)-S(0) conical intersection, the model includes the NH stretching coordinate as the tuning mode and the hydrogen out-of-plane bending coordinate as the coupling mode. For the (1)A(2)-S(0) conical intersection, the NH stretching coordinate and the screwing coordinate of the ring hydrogens are taken into account. The latter is the dominant coupling mode of this conical intersection. The electronic population-transfer processes at the conical intersections, the branching ratio between the dissociation channels, and their dependence on the initial preparation of the system have been investigated for pyrrole and deuterated pyrrole. It is shown that the excitation of the NH stretching mode strongly enhances the reaction rate, while the excitation of the coupling mode influences the branching ratio of different dissociation channels. The results suggest that laser control of the photodissociation of pyrrole via mode-specific vibrational excitation should be possible. The calculations provide insight into the microscopic details of ultrafast internal-conversion processes in pyrrole via hydrogen-detachment processes, which are aborted at the (1)pi sigma(*)-S(0) conical intersections. These mechanisms are of relevance for the photostability of the building blocks of life (e.g., the DNA bases).  相似文献   

20.
The pull-off force required to separate two elastic bodies in adhesive binding depends on the surface shapes of the corresponding binding regions on the two bodies. Given a fixed binding area A, the optimal shapes are those which give the maximum pull-off force sigma(th)A where sigma(th) is the theoretical strength of interactive forces between the two solids. Here we study closed form solutions to the optimal shapes for adhesive binding over a small circular region where slip is allowed whenever shear stress along the contact interface exceeds a critical value.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号