首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The study measured listener sensitivity to increments in the inter-onset intervals (IOIs) of successive 20-ms 4000-Hz tone bursts in isochronous sequences. The stimulus sequences contained two-six tone bursts, separated equally by silent intervals, with tonal IOIs ranging from 25 to 100 ms. Difference limens (DLs) for increments of the tonal IOIs were measured to assess listener sensitivity to changes of sequence rate. Comparative DLs were also measured for increments of a single interval located within six-tone isochronous sequences with different tone rates. Listeners included younger normal-hearing adults and two groups of older adults with and without high-frequency sensorineural hearing loss. The results, expressed as Weber fractions (DL/IOI), revealed that discrimination improved as the sequence tone rate decreased and the number of tonal components increased. Discrimination of a single sequence interval also improved as the number of sequence components increased from two to six but only for brief intervals and fast sequence rates. Discrimination performance of the older listeners with and without hearing loss was equivalent and significantly poorer than that of the younger listeners. The discrimination results are examined and discussed within the context of multiple-look mechanisms and possible age-related differences in the sensory coding of signal onsets.  相似文献   

2.
The experiments examined the ability of younger and older listeners to identify the temporal order of sounds presented in tonal sequences. The stimuli were three-tone sequences that spanned two-octave frequency range, and listeners identified random permutations of tone order using labels of relative pitch. Some of the sequences featured uniform timing characteristics, and the sequence duty cycle was varied across conditions to examine the relative influence of tonal durations and intertone interval on recognition performance across a range of sequence presentation rates. Other stimulus sequences featured nonuniform timing with unequal tone durations and intertone intervals. The listeners were groups of younger and older persons with or without hearing loss. Results indicated that temporal order recognition was influenced primarily by sequence presentation rate, independent of tonal duration, tonal interval spacing, or sequence timing characteristics. The performance of older listeners was poorer than younger listeners, but the age-related recognition differences were independent of sequence presentation rate. There were no consistent effects of hearing loss on temporal ordering performance.  相似文献   

3.
This experiment tested how listeners discriminate between the temporal patterns defined by two sequences of tones. Two arrhythmic sequences of n tones were played successively (n = 8, 12, or 16, tone duration = 35 ms, frequency = 1000 Hz), and the listener reported whether the sequences had the same or different temporal patterns. In the first sequence, the durations of the intertone gaps were chosen at random; in the second sequence, the gaps were either (a) the same as the first sequence or (b) chosen at random. Discrimination performance increased with the variability of the gap sequences and decreased with the size of the correlation between the sequences. A discrimination model based on computation of the sample correlation between the sequences of gaps, but limited by an internal variability of approximately 15 ms, described observer performance in a variety of conditions.  相似文献   

4.
The study measured listener sensitivity to increments in the inter-onset interval (IOI) separating pairs of successive 20-ms 4000-Hz tone pulses. A silent interval between the tone pulses was adjusted across conditions to create reference tonal IOI values of 25-600 ms. For each condition, a duration DL for increments of the tonal IOI was measured in listeners comprised of young normal-hearing adults and two groups of older adults with and without high-frequency hearing loss. Discrimination performance of all listeners was poorest for the shorter reference IOIs, and improved to stable levels for longer reference intervals exceeding about 200 ms. Temporal sensitivity of the young listeners was significantly better than that of the elderly listeners in each condition, with the largest age-related differences observed for the shortest reference interval. Age-related differences were also observed for duration DLs measured using single 4000-Hz tone bursts set to three reference durations in the range 50-200 ms. The tone DLs of all listeners were smaller than the corresponding tone-pair IOI DLs, particularly for the shorter reference stimulus durations. There were no significant performance differences observed between the older listeners with and without hearing loss for either discrimination task.  相似文献   

5.
In three experiments, listeners' abilities to detect changes in randomly generated tonal sequences were determined for sequences or "patterns" ranging in total duration from 62.5 ms to 2 s. Experiment 1 utilized an adaptive-tracking procedure, with n, the number of pattern components, as the dependent variable, and included a variety of spectral and temporal discrimination tasks with isochronous patterns. When the to-be-detected change was the only variation on a given dimension (e.g., the presence or location of a brief pause), patterns were discriminable when the absolute duration of the changed element, or pause, exceeded a critical value. However, when each pattern component varied on the dimension of the to-be-detected change (e.g., frequency), discriminability was strongly related to the number of tones in the pattern, and only weakly to the durations of either the target components or the total pattern. This dependence of discrimination performance on n was also demonstrated with anisochronous patterns in experiment 2. Experiment 3 revealed the same dependence of performance on the number of components per pattern as did experiments 1 and 2, but with delta f/f as the dependent variable, rather than n. The number of pattern components and the proportional duration of the target components, relative to total pattern duration, were confounded in these experiments. Additional research is therefore required to determine whether number or proportional target-tone duration is the primary determinant of pattern discriminability.  相似文献   

6.
This study examined age-related changes in temporal sensitivity to increments in the inter-onset intervals (IOI) of successive components in tonal sequences. Temporal discrimination was examined using reference stimulus patterns consisting of five 50-ms, 4000-Hz components with equal tonal IOIs selected from the range 100-600 ms. Discrimination was examined in separate conditions by measuring the relative difference limen (DL) for increments of tonal IOI in comparison sequences. In some conditions, comparison sequences featured equal increments of all tonal lOIs to examined listener sensitivity to uniform changes of sequence rate, or tempo. Other conditions measured the DL for increments of a single target IOI within otherwise uniform-rate comparison sequences. For these measurements, the single target IOI was either fixed in sequence location, or randomized in location across listening trials. Listeners in the study included four groups of young and elderly adults with and without high-frequency hearing loss. The results for all listeners showed the relative DL for rate discrimination to decrease from a maximum at the 100-ms IOI to a smaller stable value across the range of longer sequence IOI. All listeners also exhibited larger relative DLs for discrimination of single target intervals compared to rate discrimination for equivalent reference IOI values. Older listeners showed poorer performance than younger listeners in all conditions, with the largest age differences observed for discrimination of brief single intervals that were varied randomly in sequence location. None of the results revealed significant effects of hearing loss on performance of younger and older listeners.  相似文献   

7.
This paper extends previous research on listeners' abilities to discriminate the details of brief tonal components occurring within sequential auditory patterns (Watson et al., 1975, 1976). Specifically, the ability to discriminate increments in the duration delta t of tonal components was examined. Stimuli consisted of sequences of ten sinusoidal tones: a 40-ms test tone to which delta t was added, plus nine context tones with individual durations fixed at 40 ms or varying between 20 and 140 ms. The level of stimulus uncertainty was varied from high (any of 20 test tones occurring in any of nine factorial contexts), through medium (any of 20 test tones occurring in ten contexts), to minimal levels (one test tone occurring in a single context). The ability to discriminate delta t depended strongly on the level of stimulus uncertainty, and on the listener's experience with the tonal context. Asymptotic thresholds under minimal uncertainty approached 4-6 ms, or 15% of the duration of the test tones; under high uncertainty, they approached 40 ms, or 10% of the total duration of the tonal sequence. Initial thresholds exhibited by inexperienced listeners are two-to-four times greater than the asymptotic thresholds achieved after considerable training (20,000-30,000 trials). Isochronous sequences, with context tones of uniform, 40-ms duration, yield lower thresholds than those with components of varying duration. The frequency and temporal position of the test tones had only minor effects on temporal discrimination. It is proposed that a major determinant of the ability to discriminate the duration of components of sequential patterns is the listener's knowledge about "what to listen for and where." Reduced stimulus uncertainty and extensive practice increase the precision of this knowledge, and result in high-resolution discrimination performance. Increased uncertainty, limited practice, or both, would allow only discrimination of gross changes in the temporal or spectral structure of the sequential patterns.  相似文献   

8.
The level of broadband signals is usually lower than that of equally loud narrow-band signals. This effect, referred to as spectral loudness summation, is commonly measured for broadband signals where all frequency components are presented simultaneously. The present study investigated to what extent spectral loudness summation also occurs for nonsimultaneously presented frequency components. Spectral loudness summation was measured in normal-hearing listeners with an adaptive forced-choice procedure for sequences of short tone pulses with varying frequencies, randomly chosen from a set of five frequencies. In addition, spectral loudness summation was measured for the simultaneous presentation of all five frequencies. The comparison stimulus consisted of tone pulses with the same frequency for all tone pulses of the sequence and the same repetition rate and overall duration as the test signal. The pulse duration was 10, 20, 50, or 100 ms and the inter-pulse interval ranged from 0 to 390 ms. In general, a considerable nonsimultaneous spectral loudness summation was found for short pulse durations and inter-pulse intervals, but a residual effect was also observed for the largest inter-pulse interval. The data are discussed in the light of repetition-rate dependent spectral loudness summation and effects of persistence of specific loudness after tone-pulse offset.  相似文献   

9.
A principle of auditory perception that governs the detectability of changes in components in unfamiliar sequences of tones is demonstrated in four experiments. The proportion-of-the-total-duration (PTD) rule can be stated as follows: Each individual component of an unfamiliar sequence of tones is resolved with an accuracy that is a function of its proportion of the total duration of the sequence or "pattern." An adaptive-tracking frequency-discrimination task was used in all experiments. Experiment 1 demonstrated that the PTD rule holds over a wide range of total pattern durations, numbers of components, and component durations. Experiment 2 demonstrated that the PTD rule governs discrimination performance despite variation in the relative durations of context and target tones. Experiment 3, using a variable temporal position for the target, confirmed that the PTD effect does not require that a listener be able to anticipate the temporal location of the target tone. Experiment 4, using two target tones, showed that the PTD rules applies to the proportional duration of individual components within patterns and not to the total proportional duration of nonadjacent components within the pattern. These findings are incompatible with performance limitations based on a fixed-duration short-term memory capacity and with versions of informational limitations in which the amount of information in a pattern varies either with the number of components or with the total pattern duration. The PTD rule appears to reflect the way listeners distribute their attention when presented with unfamiliar complex sounds that have no structural properties (other than proportional duration) that significantly increase the salience of individual components.  相似文献   

10.
Two experiments investigated pitch perception for stimuli where the place of excitation was held constant. Experiment 1 used pulse trains in which the interpulse interval alternated between 4 and 6 ms. In experiment 1a these "4-6" pulse trains were bandpass filtered between 3900 and 5300 Hz and presented acoustically against a noise background to normal listeners. The rate of an isochronous pulse train (in which all the interpulse intervals were equal) was adjusted so that its pitch matched that of the "4-6" stimulus. The pitch matches were distributed unimodally, had a mean of 5.7 ms, and never corresponded to either 4 or to 10 ms (the period of the stimulus). In experiment 1b the pulse trains were presented both acoustically to normal listeners and electrically to users of the LAURA cochlear implant, via a single channel of their device. A forced-choice procedure was used to measure psychometric functions, in which subjects judged whether the 4-6 stimulus was higher or lower in pitch than isochronous pulse trains having periods of 3, 4, 5, 6, or 7 ms. For both groups of listeners, the point of subjective equality corresponded to a period of 5.6 to 5.7 ms. Experiment 1c confirmed that these psychometric functions were monotonic over the range 4-12 ms. In experiment 2, normal listeners adjusted the rate of an isochronous filtered pulse train to match the pitch of mixtures of pulse trains having rates of F1 and F2 Hz, passed through the same bandpass filter (3900-5400 Hz). The ratio F2/F1 was 1.29 and F1 was either 70, 92, 109, or 124 Hz. Matches were always close to F2 Hz. It is concluded that the results of both experiments are inconsistent with models of pitch perception which rely on higher-order intervals. Together with those of other published data on purely temporal pitch perception, the data are consistent with a model in which only first-order interpulse intervals contribute to pitch, and in which, over the range 0-12 ms, longer intervals receive higher weights than short intervals.  相似文献   

11.
Human observers were asked to judge whether or not two sequences of eight or more tones had the same serial pattern of frequencies. The temporal envelopes of the sequences were manipulated by randomly varying the tone durations or intertone gaps. In the correlated condition, the temporal envelopes of the sequences were varied across trials; the two sequences within each trial had the same temporal envelope. In the uncorrelated condition, the temporal envelopes were varied both across and within trials; every sequence had a unique temporal pattern. Performance in the uncorrelated condition decreased with increased variability in the temporal envelope. Performance in the correlated condition was independent of temporal variability, but decreased with increases in the time interval between the onsets of the two sequences. This pattern of results is consistent with an extension of a model of auditory discrimination developed by Durlach and Braida [J. Acoust. Soc. Am. 46, 372-383 (1969)], in which two processing modes are postulated: a trace mode and a context mode. When the tonal sequences had unique temporal patterns, context mode processing was dominant; when the sequences had identical temporal patterns, trace mode processing was preferred. The effect of variables such as the number of tones, the tone duration, the time gap between tones, and the time interval between sequences was consistent with the predictions of the discrimination model.  相似文献   

12.
This study examined vowel perception by young normal-hearing (YNH) adults, in various listening conditions designed to simulate mild-to-moderate sloping sensorineural hearing loss. YNH listeners were individually age- and gender-matched to young hearing-impaired (YHI) listeners tested in a previous study [Richie et al., J. Acoust. Soc. Am. 114, 2923-2933 (2003)]. YNH listeners were tested in three conditions designed to create equal audibility with the YHI listeners; a low signal level with and without a simulated hearing loss, and a high signal level with a simulated hearing loss. Listeners discriminated changes in synthetic vowel tokens /I e epsilon alpha ae/ when Fl or F2 varied in frequency. Comparison of YNH with YHI results failed to reveal significant differences between groups in terms of performance on vowel discrimination, in conditions of similar audibility by using both noise masking to elevate the hearing thresholds of the YNH and applying frequency-specific gain to the YHI listeners. Further, analysis of learning curves suggests that while the YHI listeners completed an average of 46% more test blocks than YNH listeners, the YHI achieved a level of discrimination similar to that of the YNH within the same number of blocks. Apparently, when age and gender are closely matched between young hearing-impaired and normal-hearing adults, performance on vowel tasks may be explained by audibility alone.  相似文献   

13.
A correlational analysis was used to assess the relative weight given to the levels of two monaurally presented tone pulses for interpulse intervals (IPIs) ranging from 2-256 ms. In three different experimental conditions, listeners were instructed to discriminate the level of the first pulse, the level of the second pulse, or the difference between the levels of the two pulses. The level of the target pulse was chosen randomly and independently from trial to trial from a Gaussian distribution. The level of the nontarget pulse was either fixed at 75 dB SPL or varied in the same manner as the level of the target. In the tasks in which one pulse was to be ignored, listeners gave increasing weight to the nontarget component as IPI decreased. Listeners weighted the level information in the pulses appropriately only when the IPI approached 256 ms. When the listeners were instructed to compare the pulse levels to one another, two of three listeners weighted the levels optimally at all IPIs, while the third listener did so only at the longest IPI. For the two listeners who weighted the pulses optimally, a minimum in performance was achieved at IPIs around 16-32 ms. Intensity discrimination thresholds were also measured for one pulse in the presence of a second fixed pulse for IPIs of 2-256 ms. Thresholds were higher in all the two-pulse conditions relative to a one-pulse condition, and were dependent on the level of the nontarget pulse but not on IPI. The results indicate that level information is integrated to some extent over fairly long durations, but not in a manner that is consistent with simple temporal integration.  相似文献   

14.
Two experiments investigated the temporal integration of trains of tone pulses by normal and by cochlearly impaired listeners. In the first experiment, thresholds were measured for a single 5-ms, 4-kHz tone pulse, and for ten such tone pulses as a function of interpulse interval (delta t). For normal listeners, temporal integration, defined as the threshold difference between one and ten pulses, was about 8 dB for delta t less than 20 ms, and about 5 dB at longer delta t's. For impaired listeners, temporal integration was only about 2-3 dB across the range of delta t's (5-160 ms) studied. A second experiment measured psychometric functions (log d' versus log signal power) for a single pulse and for ten pulses with delta t's of 5 ms and 80 ms. The normal listeners' functions had slopes close to unity in all three conditions, with a few exceptions. The impaired listeners' functions had slopes close to unity for ten pulses with delta t = 5 ms, but had slopes significantly greater than unity for delta t = 80 ms, and for a single pulse. At delta t = 80 ms, the increase in d' relative to the condition with a single tone was similar (a factor of square root of 10) for both impaired and normal listeners, but the threshold difference was smaller for the impaired listeners due to their steeper psychometric functions. For impaired listeners, then, temporal integration at delta t = 80 ms was normal in terms of a change in d' but abnormal when measured as a threshold difference.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

15.
Classical conditioning of respiration was used to obtain psychometric functions for pulsed tone level discrimination in the goldfish (Carassius auratus). Conditioned respiratory suppression is a graded response that has some properties of a confidence rating measure. These properties were used to obtain receiver operating characteristics (ROC) and psychometric functions using a blocked method of constant stimuli. Empirical ROCs and neurometric functions were also obtained for single auditory-nerve fibers using spike count as the decision variable in order to evaluate a simple rate code for level discrimination. Psychometric and neurometric functions for level discrimination are similar in showing the same general form (summarized by Weibull functions) that is independent of signal duration. The lower slope of neurometric functions compared with behavioral functions for level discrimination is in accord with similar data on sound detection and vision in nonhuman mammals. Both neural and psychophysical level discrimination thresholds decline with increasing duration (20 to 320 ms), with similar slopes except at short signal durations (20 to 50 ms). At these durations, the animal's use of a channel-selection strategy and neural information following stimulus offset could reduce the difference between neural and psychophysical thresholds. The slopes of the neural and psychophysical duration functions are similar to those for human observers, but the majority of auditory-nerve fibers sampled have lower level discrimination thresholds than the behaving animal. Since human observers perform better than the majority of neurons in level discrimination, well-trained human listeners may be able to select channels with superior information, or to combine information across channels in ways that the goldfish and other animals do not. In general, one is encouraged to believe that neural mechanisms need not be more complex or sensitive than those considered here to account for pure-tone level discrimination in fishes, humans, and other vertebrates.  相似文献   

16.
This paper reports on listening tests performed to investigate the just audible tonality (JAT) of decaying pure tone bursts. Both exponential and Gaussian functions are used to shape the envelopes of the tone bursts and critical band center frequencies between 150 and 7000 Hz are studied. Loudness compensation is implemented to compensate for the reduced loudness of short tone bursts and attack functions are used for minimizing clicks. By using the method of limits, a sequence of tone bursts with increasing decay times and constant frequencies is presented to the listeners at 0.9 s intervals. The first burst in the sequence which is perceived as being tonal is indicated by the listeners. When that happens, the decay times of the tone bursts decrease and the listeners are asked to select the first tone burst with no audible tonality. The listeners are allowed to freely define tonality. No reference is given. For frequencies above 3.4 kHz, the results indicate that tonality is just audible for tone burst lengths of approximately 2.6-3.0 ms. For the lowest stimuli frequencies, the corresponding burst length is approximately 20-23 ms.  相似文献   

17.
The purpose of this study was to examine the contribution of information provided by vowels versus consonants to sentence intelligibility in young normal-hearing (YNH) and typical elderly hearing-impaired (EHI) listeners. Sentences were presented in three conditions, unaltered or with either the vowels or the consonants replaced with speech shaped noise. Sentences from male and female talkers in the TIMIT database were selected. Baseline performance was established at a 70 dB SPL level using YNH listeners. Subsequently EHI and YNH participants listened at 95 dB SPL. Participants listened to each sentence twice and were asked to repeat the entire sentence after each presentation. Words were scored correct if identified exactly. Average performance for unaltered sentences was greater than 94%. Overall, EHI listeners performed more poorly than YNH listeners. However, vowel-only sentences were always significantly more intelligible than consonant-only sentences, usually by a ratio of 2:1 across groups. In contrast to written English or words spoken in isolation, these results demonstrated that for spoken sentences, vowels carry more information about sentence intelligibility than consonants for both young normal-hearing and elderly hearing-impaired listeners.  相似文献   

18.
This study investigated the effect of pulsatile stimulation rate on medial vowel and consonant recognition in cochlear implant listeners. Experiment 1 measured phoneme recognition as a function of stimulation rate in six Nucleus-22 cochlear implant listeners using an experimental four-channel continuous interleaved sampler (CIS) speech processing strategy. Results showed that all stimulation rates from 150 to 500 pulses/s/electrode produced equally good performance, while stimulation rates lower than 150 pulses/s/electrode produced significantly poorer performance. Experiment 2 measured phoneme recognition by implant listeners and normal-hearing listeners as a function of the low-pass cutoff frequency for envelope information. Results from both acoustic and electric hearing showed no significant difference in performance for all cutoff frequencies higher than 20 Hz. Both vowel and consonant scores dropped significantly when the cutoff frequency was reduced from 20 Hz to 2 Hz. The results of these two experiments suggest that temporal envelope information can be conveyed by relatively low stimulation rates. The pattern of results for both electrical and acoustic hearing is consistent with a simple model of temporal integration with an equivalent rectangular duration (ERD) of the temporal integrator of about 7 ms.  相似文献   

19.
Level discrimination of tones as a function of duration   总被引:1,自引:0,他引:1  
Difference limens for level [delta Ls (dB) = 20 log[p + delta p)/p), where p is the pressure] were measured as a function of duration for tones at 250, 500, and 8000 Hz. Stimulus durations ranged from 2 ms to 2 s, and the stimulus power was held constant. Rise and fall times were 1 ms. The interstimulus interval was 250 ms. At each frequency, three levels were tested: 85, 65, and approximately 40 dB SPL. An adaptive two-alternative forced-choice procedure with feedback was used. For three normal listeners, delta Ls decreased as duration increased, up to at least 2 s, except at 250 Hz. At 250 Hz, delta L stopped decreasing at durations between 0.5 and 1 s. In a double logarithmic plot of delta L versus duration, the rate of decrease is generally well fitted by a sloping line. The average slope is -0.28; it is steeper at high levels than at low levels. Because the average slope is shallower than the -0.5 slope predicted for an optimum detector, it may be that fast adaptation of auditory-nerve activity and/or memory effects interfere with level discrimination of long-duration tones. Finally, the delta Ls at 8 kHz decreased nonmonotonically with increasing level.  相似文献   

20.
Experiment 1 examined detection and discrimination of monaural four-tone sequences composed of 400-, 500-, and 625-Hz sinusoids. In the baseline conditions, the masker was monaural composed of 25-Hz-wide bands of random noise centered on 320, 400, 500, 625, and 781 Hz. In the binaural masking release conditions, the noise was presented diotically. In the monaural masking release conditions, the noise was presented to the same ear as the signal, but it was comodulated. Tones had half-amplitude durations of 30, 60, or 150 ms. There was no delay between successive tones, so the rate of frequency change depended on tone duration. Listeners discriminated between sequences composed of 500-400-625-500 Hz and 500-625-400-500 Hz. Discrimination results were poor for rapid sequences in both monaural and binaural masking release conditions relative to baseline conditions. Results from experiment 2 indicated that poor discrimination for rapid sequences could also occur in the baseline conditions, provided that the frequency separation among tonal components was small. Sluggish processing in the present paradigm was not restricted to conditions relying on binaural cues. It is argued that sluggishness may reflect a long temporal window in monaural and binaural masking release conditions or an interaction between poor cue quality and task difficulty.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号