首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Silica-metal nanostructures consisting of silica cores and metal nanoshells attract a lot of attention because of their unique properties and potential applications ranging from catalysis and biosensing to optical devices and medicine. The important feature of these nanostructures is the possibility of controlling their properties by the variation of their geometry, shell morphology and shell material. This review is devoted to silica-noble metal core-shell nanostructures; specifically, it outlines the main methods used for the preparation and surface modification of silica particles and presents the major strategies for the formation of metal nanoshells on the modified silica particles. A special emphasis is given to the St?ber method, which is relatively simple, effective and well verified for the synthesis of large and highly uniform silica particles (with diameters from 100 nm to a few microns). Next, the surface chemistry of these particles is discussed with a special focus on the attachment of specific organic groups such as aminopropyl or mercaptopropyl groups, which interact strongly with metal species. Finally, the synthesis, characterization and application of various silica-metal core-shell nanostructures are reviewed, especially in relation to the siliceous cores with gold or silver nanoshells. Nowadays, gold is most often used metal for the formation of nanoshells due to its beneficial properties for many applications. However, other metals such as silver, platinum, palladium, nickel and copper were also used for fabrication of core-shell nanostructures. Silica-metal nanostructures can be prepared using various methods, for instance, (i) growth of metal nanoshells on the siliceous cores with deposited metal nanoparticles, (ii) reduction of metal species accompanied by precipitation of metal nanoparticles on the modified silica cores, and (iii) formation of metal nanoshells under ultrasonic conditions. A special emphasis is given to the seed-mediated growth, where metal nanoshells are formed on the modified silica cores with deposited metal nanoparticles. This strategy assures a good control of the nanoshell thickness as well as its surface properties.  相似文献   

2.
The galvanic replacement reaction between silver and chloroauric acid has been exploited as a powerful means for preparing metal nanostructures with hollow interiors. Here, the utility of this approach is further extended to produce complex core/shell nanostructures made of metals by combining the replacement reaction with electroless deposition of silver. We have fabricated nanorattles consisting of Au/Ag alloy cores and Au/Ag alloy shells by starting with Au/Ag alloy colloids as the initial template. We have also prepared multiple-walled nanoshells/nanotubes (or nanoscale Matrioshka) with a variety of shapes, compositions, and structures by controlling the morphology of the template and the precursor salt used in each step of the replacement reaction. There are a number of interesting optical features associated with these new core/shell metal nanostructures. For example, nanorattles made of Au/Ag alloys displayed two well-separated extinction peaks, a feature similar to that of gold or silver nanorods. The peak at approximately 510 nm could be attributed to the Au/Ag alloy cores, while the other peak was associated with the Au/Ag alloy shells and could be continuously tuned in the spectral range from red to near-infrared.  相似文献   

3.
饶艳英  钱卫平 《化学进展》2011,23(12):2489-2497
有序金属纳米壳结构特别是有序中空纳米壳及大孔结构兼具了光子晶体和金属纳米壳结构的光学特性,引起了国内外学者的广泛关注。本文详细介绍了有序金属纳米壳材料的制备方法与步骤,主要包括胶体晶模板的组装、所需金属壳层的制备以及胶体晶模板的去除三步,并对各步的制备方法及特点进行了描述。此外,本文还对金属纳米壳有序材料的各种应用进行了综述,简要分析了目前存在的问题并展望了今后该材料的研究方向。  相似文献   

4.
We present the synthesis and analysis of silica-coated Au/Ag bimetallic nanorods with controlled surface plasmon bands. Depending on the thickness of Ag shell deposited on the Au nanorod surface, there is a blue-shift on the longitudinal surface plasmon band of Au nanorods, which can be expressed by an approximate formula derived from the absorption profile of light in Ag films using finite difference time domain simulations. The subsequent coating of silica shell not only enhances the stability of the Au/Ag bimetallic nanorods but also provides a mesoporous host for optically active species. Minute red-shifts of the longitudinal resonance mode, induced by stepwise increased silica shell volumes, are shown. Application as carrier for fluorescent rhodamine B molecules is demonstrated by photoluminescence analysis. On the single-particle level, dark field microscopy of Au/Ag-silica nanorods was finally employed. This introduces a route towards revealing the relation between structure, shape, and optical (plasmonic) properties of complex composite metal particles as well as fabrication strategies for nanoassemblies of tailored structures in the field of nanoplasmonics.  相似文献   

5.
We have utilized wet-chemical etching of ellipsoidal silica nanoparticles (ESNs) to form silica nanoshells of a range of elliptical morphologies, with the thicknesses of the ellipsoidal silica nanoshells (ESSs) controlled through variation of synthesis conditions. A mechanism has been proposed to explain how the nanoshells are formed, and we demonstrate that the porosity of the silica ellipsoid plays a role in generating silica shells. Our self-templated, wet-etching approach is an attractive alternate procedure to the approaches presently in existence for the following reasons: (i) it is a facile, one-step process that directly produces ellipsoidal silica nanoshells, while overcoming barriers (such as requirement of removing a solid-core template seed) utilized in many reported chemical etching studies; (ii) it results in ellipsoidal silica nanostructures with dimension less than 100 nm; (iii) with an appropriate etchant, the roughness of the silica shells can be well-controlled; and (iv) it results in tunable, uniform size particles with controllable shell thicknesses. Moreover, the silica materials with the unique structures might be adjusted to meet practical application requirements.  相似文献   

6.
We report a high-yield synthetic method for a new type of metal nanostructure, spiky gold nanoshells, which combine the morphological characteristics of hollow metal nanoshells and nanorods. Our method utilizes block copolymer assemblies and polymer beads as templates for the growth of spiky nanoshells. Various shapes of spiky metal nanoshells were prepared in addition to spherical nanoshells by using block copolymer assemblies such as rod-like micelles, vesicles, and bilayers as templates. Furthermore, spiky gold shells encapsulating magnetic nanoparticles or quantum dots were prepared based on the ability of block copolymers to self-assemble with various types of nanoparticles and molecules. The capability to encapsulate other materials in the core, the shape tunability, and the highly structured surface of spiky nanoshells should benefit a range of imaging, sensing, and medical applications of metal nanostructures.  相似文献   

7.
Silica beads with average diameters of 40-600 nm were prepared, and Ru(bpy)3(2+) complexes were incorporated into the beads. These beads were coated by silver layer by layer to generate porous but continuous metal nanoshells. The thicknesses of these metal shells were 5-50 nm. The emission band from the dyes in the silica cores was more narrow and the intensity was enhanced with growth of silver shell thickness due to coupling of the emission light from Ru(bpy)3(2+) in the cores with the metal plasmon from the silver shells. The enhancement of emission intensity was also dependent on the size of the silica core, showing that the enhancement efficiency decreased with an increase in the size of the silica beads. Lifetime measurements support the coupling mechanism between the dye and metal shell. This study can be used to develop novel dye-labeled metal particles with bright and narrow emission bands.  相似文献   

8.
We performed the first investigations of coherent acoustic phonons in Au-Ag core-shell nanorods, which were compared with the results of parental Au nanorods. Both breathing and extensional modes were observed in Au-Ag core-shell nanorods with ~11 nm Ag shell while only extensional modes were detected in other core-shell nanorods with 4-7 nm Ag shell. Young's modulus estimated from the oscillation period of extensional modes was found to be larger for Au-Ag core-shell nanorods with ~4 nm Ag shell, as compared with that of Au nanorods. The value of Young's modulus decreases with the increase of the Ag shell thickness and finally becomes smaller than that of Au nanorods. This phenomenon is interpreted in terms of the surface effects and the existence of grain boundaries in the lattice structure of Ag shell.  相似文献   

9.
We report novel thermosensitive hybrid core-shell particles via in situ gold nanoparticle formation using thermosensitive core-shell particles as a template. This method for the in situ synthesis of gold nanoparticles with microgel interiors offers the advantage of eliminating or significantly reducing particle aggregation. In addition, by using thermosensitive microgel structures in which the shell has thermosensitive and gel properties in water--whereas the core itself is a water-insoluble polymer--we were able to synthesize the gold nanoparticles only at the surface of the core, which had reactive sites to bind metal ions. After the gold nanoparticles were synthesized, electroless gold plating was carried out to control the thickness of the gold nanoshells. The dispersions of the obtained hybrid particles were characterized by dynamic light scattering and UV-vis absorption spectroscopy, and the dried particles were also observed by electron microscopy. Adaptation of the technique shown here will create a number of applications as optical, electronic, and biomedical functional materials.  相似文献   

10.
In this article, studies on noble metal nanostructures using near-field optical microscopic imaging are reviewed. We show that near-field transmission imaging and near-field two-photon excitation imaging provide valuable methods for investigation of plasmon resonances in metal nanostructures. The eigenfunctions of plasmon modes in metal nanoparticles are directly visualized using these methods. For metal nanowire systems, wavevectors of the longitudinal plasmon modes can be estimated directly from the wave-function images, and the dispersion relations are plotted and analyzed. Using ultrafast transient near-field imaging, we show that the deformation of the plasmon wave function takes place after photoexcitation of a gold nanorod. Such methods of plasmon-wave imaging may provide a unique basic tool for designing plasmon-mode-based nano-optical devices. We also demonstrate that the near-field two-photon excitation probability images reflect localized electric-field enhancements in metal nanostructures. We apply this method to gold nanosphere assemblies and clearly visualize the local enhanced optical fields in the interstitial sites between particles (hot spots). We also show the contribution of hot spots to surface enhanced Raman scattering. The methodology described here may provide valuable basic information about the characteristic enhanced optical fields in metal nanostructures as well as on their applications to new innovative research areas beyond the conventional scope of materials.  相似文献   

11.
The microstructure of the Zn/ZnO core/shell nanoparticles synthesized by laser ablation in liquid medium can be facilely controlled. With the surfactant concentration increased over the critical micelle concentration, the nanoparticle transformed from pure ZnO to a Zn/ZnO core/shell structure. Further, with a decrease of the applied laser power, the ZnO shell thickness was monotonously reduced till 2.5 nm and the ultrafine ZnO nanocrystals embedded in the nanoshells were also reduced till 1.5 nm, which induced the increase of the disorder degree of the nanoshell lattice. The controlling mechanism was discussed according to the competition of capping protection and the oxidation reaction of laser-induced plasma. Blue photoluminescence from the ZnO nanoshells was observed. The emission band exhibited abnormal red-blue shift and narrowing with increasing temperature. Such temperature-dependent behaviors can be well described by a localization model involving an interstitial zinc defect center. These results indicate that this method provides a convenient and universal way to obtain various metal/oxide core/shell nanoparticles with controllable microstructure, and it will be beneficial to an understanding of the physical origins of the blue emission in nanostructured ZnO as well as to extending its optical and electronic applications.  相似文献   

12.
通过以金纳米粒子为表面晶种和壳生长的方法制备了金纳米壳包覆二氧化硅的复合纳米粒子。采用TEM 和UV-Vis对复合粒子进行了表征和研究,结果表明所得到的复合粒子粒径均匀、金纳米壳光滑完整,且壳厚度可通过反应物的用量来控制。当核半径与壳厚度之比在4到13之间变化时,复合粒子的光学共振峰在可见光区到近红外光区范围内可发生大于500 nm波长的移动。  相似文献   

13.
We show that the plasmon resonances in single metallic nanoshells and multiple concentric metallic shell particles can be understood in terms of interaction between the bare plasmon modes of the individual surfaces of the metallic shells. The interaction of these elementary plasmons results in hybridized plasmons whose energy can be tuned over a wide range of optical and infrared wavelengths. The approach can easily be generalized to more complex systems, such as dimers and small nanoparticle aggregates.  相似文献   

14.
Mesoporous core–shell nanostructures with controllable ultra-large open channels in their nanoshells are of great interest. However, soft template-directed cooperative assembly to mesoporous nanoshells with highly accessible pores larger than 30 nm, or even above 50 nm into macroporous range, remains a significant challenge. Herein we report a general approach for precisely tailored coating of hierarchically macro-/mesoporous polymer and carbon shells, possessing highly accessible radial channels with extremely wide pore size distribution from ca. 10 nm to ca. 200 nm, on diverse functional materials. This strategy creates opportunities to tailor the interfacial assembly of irregular mesostructured nanounits on core materials and generate various core–shell nanomaterials with controllable pore architectures. The obtained Fe,N-doped macro-/mesoporous carbon nanoshells show enhanced electrochemical performance for the oxygen reduction reaction in alkaline condition.  相似文献   

15.
Nanoscale metal shells have many potential uses and in some applications offer significant advantages over nanoparticles. The synthesis of platinum nanoshells using stabilized nanodroplets of benzene in water as growth templates is described; the nanodroplets are stabilized by a surfactant-like tin(IV)-porphyrin complex localized at the benzene-water interface. The porphyrin also acts as a photocatalyst that reduces the platinum complex and deposits metal onto the nanodroplets to form dendritic metal nanoshells. Below the solubility limit of benzene in water, the lipoporphyrin-stabilized nanodroplets have a reproducible number, size distribution, and surface area, which allows the thickness of the platinum shell walls to be controlled by changing the amount of platinum complex. Nanoscale platinum shells with magnetic interiors can be made by dispersing Fe3O4 nanoparticles in the benzene nanodroplets.  相似文献   

16.
In the Letter, we demonstrate an improved electroless plating method for the synthesis of bimetallic shell particles. The procedure involves a combination of surface reaction, seeding growth, and removal of supporting cores. We modified ammonical AgNO3 in ethanol with a controlled amount of HCHO in the seeding process and a uniform and relatively dense coverage of silver nanoparticle seeds on colloid cores was achieved. Following the second kind of metal plating, we extended this method to prepare continuous bimetallic core-shell and hollow particles with a submicrometer diameter. The morphologies of the bimetallic Cu/Ag and Pt/Ag particles were studied with transmission electron microscopy and scanning electron microscopy, and their crystallinity and chemical composition were confirmed by X-ray diffraction. The prepared materials may be of applied value in areas such as catalysis, optics, and plasmonics.  相似文献   

17.
Electrodynamic simulations of gold nanoparticle spectra were used to investigate the sensitivity of localized surface plasmon band position to the refractive index, n, of the medium for nanoparticles of various shapes and nanoshells of various structures. Among single-component nanoparticles less than 130 nm in size, sensitivities of dipole resonance positions to bulk refractive index are found to depend only upon the wavelength of the resonance and the dielectric properties of the metal and the medium. Among particle plasmons that peak in the frequency range where the real part of the metal dielectric function varies linearly with wavelength and the imaginary part is small and slowly varying, the sensitivity of the peak wavelength, lambda, to refractive index, n, is found to be a linearly increasing function of lambda, regardless of the structural features of the particle that determine lambda. Quasistatic theory is used to derive an analytical expression for the refractive index sensitivity of small particle plasmon peaks. Through this analysis, the dependence of sensitivity on band position is found to be determined by the wavelength dependence of the real part, epsilon', of the particle dielectric function, and the sensitivity results are found to extend to all particles with resonance conditions of the form, epsilon' = -2chin(2), where chi is a function of geometric parameters and other constants. The sensitivity results observed using accurate computational methods for dipolar plasmon bands of gold nanodisks, nanorods, and hollow nanoshells extend, therefore, to particles of other shapes (such as hexagonal and chopped tetrahedral), composed of other metals, and to higher-order modes. The bulk refractive index sensitivity yielded by the theory serves as an upper bound to sensitivities of nanoparticles on dielectric substrates and sensitivities of nanoparticles to local refractive index changes, such as those associated with biomolecule sensing.  相似文献   

18.
This paper reports a surface functional monomer-directing strategy for the highly dense imprinting of 2,4,6-trinitrotoluene (TNT) molecules at the surface of silica nanoparticles. It has been demonstrated that the vinyl functional monomer layer of the silica surface can not only direct the selective occurrence of imprinting polymerization at the surface of silica through the copolymerization of vinyl end groups with functional monomers, but also drive TNT templates into the formed polymer shells through the charge-transfer complexing interactions between TNT and the functional monomer layer. The two basic processes lead to the formation of uniform core-shell TNT-imprinted nanoparticles with a controllable shell thickness and a high density of effective recognition sites. The high capacity and fast kinetics to uptake TNT molecules show that the density of effective imprinted sites in the nanoshells is nearly 5 times that of traditional imprinted particles. A critical value of shell thickness for the maximum rebinding capacity was determined by testing the evolution of rebinding capacity with shell thickness, which provides new insights into the effectiveness of molecular imprinting and the form of imprinted materials. These results reported here not only can find many applications in molecularly imprinting techniques but also can form the basis of a new strategy for preparing various polymer-coating layers on silica support.  相似文献   

19.
We investigate, using molecular dynamics, the effect on the radial breathing mode (RBM) frequency of immersion in water for a range of single-walled carbon nanotubes. We find that nanotube-water interactions are responsible for an upshift in the RBM frequency of the order of 4-10 wave numbers. The upshift is comprised of two components: increased hydrostatic pressure on the nanotube due to curvature effects, and the dynamic coupling of the RBM with its solvation shell. In contrast to much of the current literature, we find that the latter of the two effects is dominant. This could serve as an innovative tool for determining the interaction potential between nanotubes/graphitic surfaces and fluids.  相似文献   

20.
SiO2/Ag核壳结构纳米粒子的制备及表征   总被引:3,自引:0,他引:3  
胡永红  容建华  刘应亮  满石清 《化学学报》2005,63(24):2189-2193
以金纳米粒子为表面晶种, 通过化学还原的方法制备了二氧化硅/银核壳复合纳米粒子. 采用TEM, XRD及UV/vis对其结构、形貌以及光学性质进行了表征和研究, 结果表明所得到的复合粒子粒径均匀、银纳米壳光滑完整, 厚度可控. 并且随着银纳米壳厚度的增大, 其光学等离子体共振峰逐渐蓝移. 而当银纳米粒子在二氧化硅胶粒表面上生长的过程中, 它们的共振峰又逐渐红移, 直到完整的银壳形成.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号