首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Sol-gel synthesis of titania typically produces a mixture of brookite and anatase. Rietveld refinements were used to systematically track the brookite content and particle size as functions of synthetic variables. Results demonstrate that brookite content and anatase particle size decrease with decreasing Ti/H(2)O ratios. In syntheses at pH 3, the addition of HCl resulted in increased amorphous content compared to samples synthesized using HNO(3). Similar amorphous contents were observed for particles prepared at pH 6-9. Hydrothermal aging for 4 h at 200 degrees C of sol-gel products containing substantial amorphous titania resulted in higher brookite content than did hydrothermal aging of sol-gel products containing little to no amorphous titania. Finally, dialysis prior to hydrothermal aging appeared to inhibit phase transformation from brookite to anatase in aged materials. Results presented demonstrate that considerable control over the relative anatase and brookite contents can be achieved through control of synthetic variables.  相似文献   

2.
Nano rutile, anatase, and bicrystalline (anatase + brookite) titania powders with an average crystal size of below 10 nm are prepared from aqueous TiOCl(2) solution at low temperatures by adjusting pH values of the starting solution and adding different additives. Adding a small amount of octyl phenol poly(ethylene oxide) into aqueous TiOCl(2) solution leads to the change of particle morphologies of obtained nano titania from needlelike to nano spherical rutile crystals. Amorphous-anatase transformation of titania could proceed in liquid-solid reaction at low temperatures, even at room temperature. A formation mechanism of rutile, anatase, and brookite titania was proposed. It is found that H(+) or H(3)O(+) plays a catalytic role in the phase transformation from amorphous to anatase titania and that the presence of a small amount of SO(4)(2)(-) ion is unfavorable to the formation of both rutile and brookite. By carefully adjusting preparation conditions, nano pure anatase with higher surface area, good crystallinity, and a lower recombination rate of photoexcited electrons and holes was obtained. This nano pure anatase showed a very good photocatalytic activity for gas-phase photo-oxidation of benzene.  相似文献   

3.
Nanosized anatase (< or = 10 nm), rutile (< or = 10 nm), and brookite (approximately 70 nm) titania particles have been successfully synthesized via sonication and hydrothermal methods. Gold was deposited with high dispersion onto the surfaces of anatase, rutile, brookite, and commercial titania (P25) supports through a deposition-precipitation (D-P) process. All catalysts were exposed to an identical sequence of treatment and measurements of catalytic CO oxidation activity. The as-synthesized catalysts have high activity with concomitant Au reduction upon exposure to the reactant stream. Mild reduction at 423 K produces comparably high activity catalysts for every support. Deactivation of the four catalysts was observed following a sequence of treatments at temperatures up to 573 K. The brookite-supported gold catalyst sustains the highest catalytic activity after all treatments. XRD and TEM results indicate that the gold particles supported on brookite are smaller than those on the other supports following the reaction and pretreatment sequences.  相似文献   

4.
Sol-gel titania was sulfated by using sulfuric acid as hydrolysis catalyst, or by impregnating with ammonium sulfate fresh samples prepared with nitric acid or ammonium hydroxide as hydrolysis catalyst. Samples were characterized with X-ray powder diffraction, infrared spectroscopy, thermogravimetry and atomic absorption spectroscopy. Sulfate ions were found anchored to brookite and anatase phases, because they have short O—O atomic bond lengths slightly larger than the largest O—O bond length of sulfate ion. Since the shortest O—O atomic bond in anatase is smaller than the one in brookite, the sulfate ions are then less deformed when they are anchored to anatase, and consequently more stable. Therefore when the sample temperature is raised, the brookite with sulfate ions was transformed mainly to anatase and not into rutile, which is the most probably transformation when these ions are not involved. Sulfate ions also hindered anatase and brookite crystallite growing and stabilized the crystalline structure of anatase. When the sulfate ions are lost the crystalline anatase phase is transformed into rutile, leaving a large number of vacancies that favored atom diffusion and consequently the growing of rutile crystallites. The crystalline evolution of the samples as a function of the annealing temperature is almost independent of the sulfating method.  相似文献   

5.
We report on the synthesis of ZnO and TiO2 nanoparticles by solution-phase methods, with a particular focus on the influence of experimental parameters on the kinetics of nucleation and coarsening. The nucleation rate of ZnO from the reaction between ZnCl2 and NaOH in ethanol was found to increase with increasing precursor concentration, while the coarsening rate is independent of precursor concentration up to a threshold concentration. The nucleation rate of ZnO from Zn(OOC-CH3)2 and NaOH in n-alkanols was found to decrease with decreasing chain length, which is explained by the increase of the dielectric constant of the solvent. Due to the larger solubility of ZnO, nucleation is significantly slower than that observed in the case of TiO2. TiO2 nanoparticles coarsen according to the Lifshitz-Slyozov-Wagner model for Ostwald ripening. We also show that using amorphous titania as a base material, pure anatase and brookite nanoparticles can be synthesized.  相似文献   

6.
Nanocrystalline titania powders were synthesized at low temperature (⩽100°C) by a sol–gel method that achieved fine control of particle size and polymorph fraction. X-ray diffraction (XRD), transmission electron microscopy (TEM) and UV–Vis spectroscopy were used to characterize the phase assemblages, crystal size and band gap of the powders. It was demonstrated that larger, well-ordered titania crystals can be obtained by increasing aging temperature and time. These processing parameters can be adjusted to select specific polymorphs from the gel precursors with particular size and shape. The quantum size effect was observed in the size-controlled nanocrystalline titania particles, leading to a blue shift in UV absorption with decreasing in particle size. The anatase to rutile transformation, which may proceed with brookite as a transition phase, is dependent on both particle size and surface structure of the nascent crystals.  相似文献   

7.
采用水热合成法, 通过对溶液的pH值、反应物配比、陈化温度及陈化时间等条件的控制, 合成出不同晶型及形貌的TiO2纳米粒子. 结果表明, 溶液的pH=11, n(钛酸丁酯):n(三乙醇胺)=1:2, 陈化温度为150 ℃, 陈化时间为48 h时, 能得到较规则的、长径比约为4:1的棒状TiO2. 当溶液pH<10时, 得到球形的TiO2纳米粒子; 陈化时间为24 h时, 得到纺锤形TiO2纳米晶. 以上合成的纳米粒子均为锐钛矿型, 但当溶液的pH>12时, 则得到板钛矿型TiO2粒子. 以苯酚为降解模型, 考察了不同形貌TiO2的光催化活性.  相似文献   

8.
Recently, as an application of the novel synthetic of monodisperse particies named the “gel-sol method”, uniform spindle-like titania particles of anatase type have been produced by a 2-step process, consisting of the first aging of an aqueous solution of a titanium-triethanolamine compound for 24 h at 100°C for the formation of a rigid hydrolyzed gel and the second aging for 72 h at 140°C for the nucleation and growth of the titania particles in the gel network (T. Sugimoto et al., J. Colloid Interface Sci., in press). In this paper, the study is focused on the characterization of the titanium-triethanolamine compound, gel. and final product titania, the formation mechanism of the titania panicles, and their size control.  相似文献   

9.
Nitrogen-doped titania nanoparticles consisted of pure anatase, rutile and brookite phases were successfully prepared by a solvothermal process in TiCl3-HMT (hexamethylenetetramine, C6H12N4)-alcohol mixed solution. The powders were yellow or beige and showed excellent visible light absorption and photocatalytic ability for the oxidative destruction of nitrogen monoxide under irradiation of visible light of wavelength >510 nm.  相似文献   

10.
单一板钛矿相TiO2微晶的制备   总被引:8,自引:0,他引:8  
以新鲜的无定形TiO2沉淀为前驱体,在水热条件下得到了板钛矿型TiO2微晶粉末,考察了前驱体制备过程中碱的种类与用量以及水热反应的温度和时间等因素对板钛矿型TiO2的影响.XRD,TEM和Raman测试表明,所合成的样品具有单一的板钛矿型TiO2结构,晶相纯度很高,晶粒形状相同且具有完美的内部结构,粒度分布均匀.此板钛矿型TiO2样品在900℃时开始向金红石结构转化,1000℃时完全转变为金红石结构.  相似文献   

11.
The nucleation and evolution of Ni nanoparticles during reduction of a Ni(NO3)2.6H2O precursor supported on a commercial titania substrate have been studied in situ at atomic resolution using environmental transmission electron microscopy. An incipient wetness technique was used to prepare the starting unreduced material (10 wt % Ni precursor on titania). The Ni precursor, before reduction, shows a nonuniform distribution over the titania support. It is observed that upon reduction, the initial Ni "seed" crystal nucleates within the precursor patch. The distribution and size of the Ni nanoparticles thus generated are influenced by the distribution and size of the precursor patches. In this system, we see no evidence of preferential nucleation of Ni particles on anatase or rutile. At 350 degrees C with CO as the reducing agent, the {111} surface facets of the Ni nanoparticles are predominant during the initial stage of nucleation and growth. However, the {111} facets are partially consumed with time, indicating that they are not thermodynamically favored in the CO atmosphere. In CO and H2 atmospheres, Ni particles show a nonwetting morphology on titania, while in a mild oxidizing environment, a thin layer of NiOx is formed, thus giving rise to a morphology that is indicative of wetting of the support. This work provides fundamental information on understanding and controlling the important parameters involved in the preparation of a well-designed supported Ni catalyst using the incipient wetness technique.  相似文献   

12.
In situ synchrotron X-ray diffraction and diffuse reflectance infrared spectroscopy (DRIFTS) are combined to study the influence of sulfur on the crystallization of pure and Fe-doped titania nano-materials. Using these two tools we have investigated the effect of sulfur on the nucleation and growth processes of the anatase polymorph from amorphous powders and show how the addition of sulfur controls the primary particle size and shape of the materials. As well known, sulfur leads to the stabilization of the oxide particle size against sintering during thermal treatments and here we interpret the physico-chemical basis of such behaviour as an exclusive effect on grain growth kinetics, in turn linked to the dehydration of the surface layers of the materials. In addition this work shows that the presence of sulfur also affects the shape of the anatase particles, favouring the existence of (101)-type surfaces and elongated (along the c crystallographic axis) particles. This combined analysis of how sulfur influences morphological aspects of the anatase phase as it grows provides a basis for understanding of surface and chemical properties of anatase nano-powders that are highly dependent upon particle morphology.  相似文献   

13.
A method for analysis of separate sigma and pi overlap populations in a system of very low symmetry has been proposed. The calculations are performed in Ti3O3, rutile, anatase, brookite and tetragonal barium titanate. The examination of the various bond overlap populations has led to reasonable explanation on the infrared absorption spectra of CO and CO3 chemisorption on rutile and anatase and the relative heats of formation of anatase, rutile and brookite.  相似文献   

14.
Titanium dioxide is one of the most intensely studied oxides due to its interesting electrochemical and photocatalytic properties and it is widely applied, for example in photocatalysis, electrochemical energy storage, in white pigments, as support in catalysis, etc. Common synthesis methods of titanium dioxide typically require a high temperature step to crystallize the amorphous material into one of the polymorphs of titania, e.g. anatase, brookite and rutile, thus resulting in larger particles and mostly non-porous materials. Only recently, low temperature solution-based protocols gave access to crystalline titania with higher degree of control over the formed polymorph and its intra- or interparticle porosity. The present work critically reviews the formation of crystalline nanoscale titania particles via solution-based approaches without thermal treatment, with special focus on the resulting polymorphs, crystal morphology, surface area, and particle dimensions. Special emphasis is given to sol-gel processes via glycolated precursor molecules as well as the miniemulsion technique. The functional properties of these materials and the differences to chemically identical, non-porous materials are illustrated using heterogeneous catalysis and electrochemical energy storage (battery materials) as example.  相似文献   

15.
We study the effect of combined sensitization/activation solutions on chemical deposition of ultrafine-grained composite coatings based on copper and anatase titania on diamond powders. The surface sensitization/ activation parameters influence the deposition kinetics of copper and composite coatings, determining the copper nucleation rate and making a special contribution to the predetermination of the dispersivity of components and the morphology of coatings.  相似文献   

16.
Mesoporous nanocrystalline Cd-doped titania was firstly prepared at low temperature by a modified sol–gel method, using dodecylamine as a template. The template could be easily removed by refluxing samples in nitric acid ethanol solution. The Fourier transform infrared spectrometer (FT-IR), low-angle and wide-angle X-ray diffraction (XRD), N2 adsorption–desorption, transmission electron microscopy (TEM), X-ray photoelectron spectra (XPS), and UV–visible diffuse reflectance spectroscopy were used for the characterization of catalysts. The characteristic results clearly showed that Cd2+ ions were doped into the titania lattice, and the mesoporous architecture of Cd-doped TiO2 was composed of mixed-phase crystal textures of anatase and brookite. The samples displayed high visible-light photocatalytic activity for photodegradating 2,4-dichlorophenol (2,4-DCP) solution. The high activities of samples were attributed to the bicrystalline framework, large BET surface area, small crystallite size, and Cd-doping.  相似文献   

17.
TiO2 nanopowders were produced by sol–gel technique under different synthesis conditions. XRD results have shown that obtained nanopowders are in anatase phase, with the presence of a small amount of highly disordered brookite phase, whereas nanocrystallite size and amount of brookite slightly depend on sol–gel synthesis conditions. Raman measurements confirm these results. The analyses of the shift and width of the most intensive anatase E g Raman mode by phonon confinement model suggest that anatase crystallite size should be in the range between 11 and 15 nm, what is in excellent correlation with XRD results. Obtained results have shown that Raman spectroscopy is a highly sensitive method for the estimation of anatase crystallite size as well as brookite content in TiO2 nanopowders synthesized by variable sol–gel synthesis conditions.  相似文献   

18.
Crystallization behaviors of anatase nanocrystallites from an ultrathin two-dimensional reactant composed of exfoliated titania nanosheets have been studied by monitoring the heating process of their well-organized films, with which the film thickness can be controlled from a molecularly thin monolayer to a stacked multilayer structure with a stepwise increment of approximately 1 nm. The heated products were identified by means of total reflection fluorescence X-ray absorption near-edge structure analysis and in-plane X-ray diffraction measurements using a synchrotron radiation source. The films composed of five or more layers of stacked nanosheets were transformed into anatase at 400-500 degrees C, which is a normal crystallization temperature of anatase from bulk reactants. As the film became thinner by decreasing the number of nanosheet layers to five or less, the crystallization temperature was found to increase and finally reached 800 degrees C for the monolayer film. Interestingly, preferential growth of anatase along the c-axis was strongly promoted for these ultrathin films. These unusual behaviors may be understood in terms of crystallization from the two-dimensional system of scarcely distributed reactants. The titania nanosheet crystallite is much thinner than the unit cell dimensions of anatase, and therefore, extensive atomic diffusion is required for the transformation particularly for the ultrathin films with a critical number (2-3) of stacked nanosheet layers. There is some structural similarity between anatase and titania nanosheet, which may account for the oriented growth of anatase nanocrystallites.  相似文献   

19.
Molecular dynamics simulations of titanium dioxide nanoparticles in the three commonly occurring phases (anatase, brookite, and rutile) are reported. The structural properties inferred by simulated X-ray diffraction patterns of the nanoparticles were investigated. The titanium-oxygen bond length as a function of size, phase, and temperature was determined and was found to be dependent on the coordination environment of the titanium and independent of phase and size. The equilibrium Ti-O bond length is 1.86 A for a four-coordinated titanium ion, 1.92 A for a five-coordinated titanium ion, and 1.94 A for an octahedral titanium ion. Smaller nanoparticles are characterized by a higher fraction of titanium ions that are four and five coordinated, due to the larger surface area-to-volume ratios. The surface energies for anatase, rutile, and brookite particles were reported. The surface energy of the nanoparticle increases and approaches a constant value as the particle gets bigger. The surface energies of small rutile particles are higher than that for anatase particles of a similar size, consistent with anatase being the more stable phase of nanocrystalline titanium dioxide.  相似文献   

20.
Bulk hierarchical anatase‐titania/cellulose composite sheets were fabricated by subjecting an ultrathin titania gel film pre‐deposited filter paper to a solvo‐co‐hydrothermal treatment by using titanium butoxide as the precursor to grow anatase‐titania nanocrystallites on the cellulose nanofiber surfaces. The titanium butoxide specie is firstly absorbed onto the nanofibers of the cellulose substance through a solvothermal process, which was thereafter hydrolyzed and crystallized upon the subsequent hydrothermal treatment, leading to the formation of fine anatase‐titania nanoparticles with sizes of 2–5 nm uniformly anchored on the cellulose nanofibers. The resulting anatase‐titania/cellulose composite sheet shows a significant photocatalytic performance towards degradation of a methylene blue dye, and introduction of silver nanoparticles into the composite sheet yields an Ag‐NP/anatase‐titania/cellulose composite material possessing excellent antibacterial activity against both Gram‐positive and Gram‐negative bacteria.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号