首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The effect of electronic-nuclear coupling on electronic transport through a complex molecular network is studied. Electronic tunneling dynamics in a network of N donor/acceptor sites, connected by molecular bridges, is shown to be controlled by electronic-nuclear coupling at the bridges. Particularly, electronic coupling to an accepting nuclear mode at the contact site between the donor and the rest of the network is shown to affect the tunneling path selection to specific acceptors. In the "deep" tunneling regime, the network is mapped onto an N-level system using a recursive perturbation expansion, enabling analytical treatment of the electronic dynamics. The analytic formulation is applied for two model systems, demonstrating site-directed tunneling by electronic-nuclear coupling. Numerical simulations suggest that this phenomenon is not limited to the deep tunneling regime.  相似文献   

2.
A model for electron transfer in donor-bridge-acceptor complexes with electronic coupling to nuclear bridge modes is studied using the Redfield formulation. We demonstrate that the transport mechanism through the molecular bridge is controlled by the location of the electronic-nuclear coupling term along the bridge. As the electronic-nuclear coupling term is shifted from the donor/acceptor-bridge contact sites into the bridge, the mechanism changes from kinetic transport (incoherent, thermally activated, and bridge-length independent) to coherent tunneling oscillations. This study joins earlier works aiming to explore the factors which control the mechanism of electronic transport through molecular bridges and molecular wires.  相似文献   

3.
Effects of anharmonic bridge vibrations on electronic tunneling in donor-bridge-acceptor complexes are studied using a model of anharmonic bridge vibration coupled nonlinearly to an electronic degree of freedom. An anharmonicity parameter is introduced, enabling to reproduce the standard harmonic model with linear coupling as a limiting case. The frequency of electronic tunneling oscillations between the donor and acceptor sites is shown to be sensitive to the nuclear anharmonicity, where stretching and compression modes have an opposite effect on the electronic frequency. This phenomenon, that cannot be accounted for within the harmonic approximation, is analyzed and explained.  相似文献   

4.
In this paper we describe an application of the trajectory-based semiclassical Liouville method for modeling coherent molecular dynamics on multiple electronic surfaces to the treatment of the evolution and decay of quantum electronic coherence in many-body systems. We consider a model representing the coherent evolution of quantum wave packets on two excited electronic surfaces of a diatomic molecule in the gas phase and in rare gas solvent environments, ranging from small clusters to a cryogenic solid. For the gas phase system, the semiclassical trajectory method is shown to reproduce the evolution of the electronic-nuclear coherence nearly quantitatively. The dynamics of decoherence are then investigated for the solvated systems using the semiclassical approach. It is found that, although solvation in general leads to more rapid and extensive loss of quantum coherence, the details of the coupled system-bath dynamics are important, and in some cases the environment can preserve or even enhance quantum coherence beyond that seen in the isolated system.  相似文献   

5.
Electronic coherence dynamics in trans-polyacetylene oligomers are considered by explicitly computing the time dependent molecular polarization from the coupled dynamics of electronic and vibrational degrees of freedom in a mean-field mixed quantum-classical approximation. The oligomers are described by the Su-Schrieffer-Heeger Hamiltonian and the effect of decoherence is incorporated by propagating an ensemble of quantum-classical trajectories with initial conditions obtained by sampling the Wigner distribution of the nuclear degrees of freedom. The electronic coherence of superpositions between the ground and excited and between pairs of excited states is examined for chains of different length, and the dynamics is discussed in terms of the nuclear overlap function that appears in the off-diagonal elements of the electronic reduced density matrix. For long oligomers the loss of coherence occurs in tens of femtoseconds. This time scale is determined by the decay of population into other electronic states through vibronic interactions, and is relatively insensitive to the type and class of superposition considered. By contrast, for smaller oligomers the decoherence time scale depends strongly on the initially selected superposition, with superpositions that can decay as fast as 50 fs and as slow as 250 fs. The long-lived superpositions are such that little population is transferred to other electronic states and for which the vibronic dynamics is relatively harmonic.  相似文献   

6.
The previously formulated semiclassical theory (Zhao, Liang, and Nakamura, J. Phys. Chem. A 2006, 110, 8204) is used to study electron transfer in the Marcus inverted case by considering multidimensional potential energy surfaces of donor and acceptor. The Zhu-Nakamura formulas of nonadiabatic transition in the case of Landau-Zener type are incorporated into the approach. The theory properly takes into account the nonadiabatic transition coupled with the nuclear tunneling and can cover the whole range from weak to strong coupling regime uniformly under the assumption of fast solvent relaxation. The numerical calculations are performed for the 12-dimensional model of shifted harmonic oscillators and demonstrate that the reaction rate with respect to the electronic coupling shows a maximum, confirming the adiabatic suppression in the strong coupling limit. The adiabatic suppression is dramatically reduced by the effect of nuclear tunneling compared to the case that the Landau-Zener formula is used. The possible extension and applications to the case of the slow solvent dynamics are discussed.  相似文献   

7.
8.
9.
10.
Electron transport through single molecules or collections of molecules oriented in parallel can occur by several mechanisms, including coherent tunneling, activated transfer between potential wells, various “hopping” modes, etc. Given suitable energy levels and sufficiently long charge transport times, reduction or oxidation with accompanying nuclear reorganization can occur to generate “polarons”, that is, localized redox centers in the molecule or monolayer. Redox events in molecular junctions are amenable to spectroscopic monitoring in working devices, and can have major effects on the electronic behavior of the junction. Several examples are presented, along with a possible application to molecular memory.  相似文献   

11.
To measure the transport of vibrational energy along a peptide helix, Hamm and co-workers [J. Phys. Chem. B 112, 9091 (2008)] performed time-resolved vibrational experiments, which showed that the energy transport rate increases by at least a factor of 4, when a localized C=O mode of the peptide instead of an attached chromophore is excited. This finding raises the question if coherent excitonic energy transfer between the C=O modes may be of importance for the overall energy transport in peptides. With this idea in mind, nonequilibrium molecular dynamics simulations as well as quantum-classical calculations are performed, which qualitatively reproduce the experimental findings. Moreover, the latter model (an exciton Hamiltonian whose matrix elements depend on the instantaneous positions of the peptide and solvent atoms) indeed exhibits the signatures of coherent quantum energy transport, at least within the first few picoseconds and at low temperatures. The origin of the observed decoherence, the absence of vibrational self-trapping, and the possibility of quantum interference between various transport paths are discussed in some detail.  相似文献   

12.
The coupling of specific nuclear and electronic degrees of freedom of a molecular system during non-radiative electronic transitions plays a central role in photochemistry and photobiology. This breakdown of the Born-Oppenheimer approximation during processes such as internal conversion determines the mechanism and product distribution of photochemical reactions and is responsible for the high efficiency of photobiological processes. In order to explore this phenomena in beta-carotene, a molecule that plays a primary role as an auxiliary light-harvesting pigment in photosynthesis, a spectroscopic method was employed that allows for the individual vibrational modes to be monitored selectively within the dynamics of an internal conversion process. This spectroscopic technique employs an initial pump laser to excite the molecule into an excited electronic state and resolves the subsequent relaxation process by interrogating the system with a time-delayed, coherent anti-Stokes Raman process (CARS), which acts as a mode-selective filter for observing the population flow within specific vibrational modes with a time resolution in the femtosecond regime.  相似文献   

13.
We model the coherent energy transfer of an electronic excitation within covalently linked aromatic homodimers from first-principles. Our results shed light on whether commonly used models of the bath calculated via detailed electronic structure calculations can reproduce the key dynamics. For the systems we model, the time scales of coherent transport are experimentally known from time-dependent polarization anisotropy measurements, and so we can directly assess whether current techniques are predictive for modeling coherent transport. The coupling of the electronic degrees of freedom to the nuclear degrees of freedom is calculated from first-principles rather than assumed, and the fluorescence anisotropy decay is directly reproduced. Surprisingly, we find that although time-dependent density functional theory absolute energies are routinely in error by orders of magnitude more than the coupling energy between monomers, the coherent transport properties of these dimers can be semi-quantitatively reproduced from these calculations. Future directions which must be pursued to yield predictive and reliable models of coherent transport are suggested.  相似文献   

14.
In this work we apply the coupled coherent states technique of quantum molecular dynamics to simulation of the absorption spectrum of pyrazine. All 24 vibrational modes are taken into account. The nonadiabatic coupling obetween the S(1) and S(2) electronic states is treated by a mapping approach that adds two extra degrees of freedom to the effective vibronic Hamiltonian. The results are in a good agreement with experiment and with previous calculations by quantum multiconfigurational time dependent Hartree and semiclassical Herman-Kluk methods.  相似文献   

15.
The semiclassical tunneling method is applied to evaluate the tunneling splitting of tropolone due to the intramolecular proton transfer in the electronic excited state, first time, in a framework of the trajectory on-the-fly molecular dynamics (TOF-MD) approach. To prevent unphysical zero-point vibrational energy transfer among the normal modes of vibration, quantum zero-point vibrational energies are assigned only to the vibrational modes related to intramolecular proton transfer, whereas the remaining modes are treated as bath modes. Practical ways to determine the tunnel-initiating points and tunneling path are introduced. It is shown that the tunneling splitting decreases as the bath-mode energy increases. The experimental tunneling splitting value is well reproduced by the present TOF-MD approach based on the Wentzel-Kramers-Brillouin (WKB) approximation.  相似文献   

16.
Chemical theory and its application to dynamical electrons in molecules under intense electromagnetic fields is explored, in which we take an explicit account of nuclear nonadiabatic (kinematic) interactions along with simultaneous coupling with intense optical interactions. All the electronic wavefunctions studied here are necessarily time-dependent, and thereby beyond stationary state quantum chemistry based on the Born-Oppenheimer framework. As a general and tractable alternative framework with which to track the electronic and nuclear simultaneous dynamics, we propose an on-the-fly method to calculate the electron and nuclear wavepackets coupled along the branching non-Born-Oppenheimer paths, through which their bifurcations, strong quantum entanglement between nuclear electronic motions, and coherence and decoherence among the phases associated with them are properly represented. Some illustrative numerical examples are also reported, which are aimed at our final goals; real time tracking of nonadiabatic electronic states, chemical dynamics in densely degenerate electronic states coupled with nuclear motions and manipulation and/or creation of new electronic states in terms of intense lasers, and so on. Other examples are also presented as to how the electron wavepacket dynamics can be used to analyze chemical reactions, shedding a new light on some typical and conventional chemical reactions such as proton transfer followed by tautomerization.  相似文献   

17.
We present a surface hopping method for chemical reaction in solution based on diabatic representation, where quantum mechanical time evolution of the vibrational state of the reacting nuclei as well as the reaction-related electronic state of the system are traced simultaneously together with the classical motion of the solvent. The method is effective in describing the system where decoherence between reactant and product states is rapid. The diabatic representation can also give a clear picture for the reaction mechanism, e.g., thermal activation mechanism and a tunneling one. An idea of molecular orbital theory has been applied to evaluate the solvent contribution to the electronic coupling which determines the rate of reactive transition between the reactant and product potential surfaces. We applied the method to a model system which can describe complex chemical reaction of the real system. Two numerical examples are presented in order to demonstrate the applicability of the present method, where the first example traces a chemical reaction proceeded by thermal activation mechanism and the second examines tunneling mechanism mimicking a proton transfer reaction.  相似文献   

18.
19.
Long-range electronic coupling of local donor and acceptor sites is formulated in the context of thermal and optical electron transfer and then illustrated with examples based on electronic structure calculations. The relationship of the calculated results to available experimental kinetic and optical data is discussed in detail. The influence of nuclear modes on the magnitude of the coupling (i.e., departures from the Condon approximation) is investigated in terms of both discrete molecular modes and solvent modes, and a general expression is presented for the modulation of the superexchange tunneling gap by motion along the electron transfer reaction coordinate. AcknowledgementsThe author is grateful to R.J. Cave and M. Rust for making available molecular coordinates for acridinium derivatives, and to R.J. Cave for several valuable discussions. This work was supported by the Division of Chemical Sciences, US Department of Energy, under grant DE-AC02-98CH10886.  相似文献   

20.
Quantum beats in nonlinear spectroscopy of molecular aggregates are often attributed to electronic phenomena of excitonic systems, while nuclear degrees of freedom are commonly included into models as overdamped oscillations of bath constituents responsible for dephasing. However, molecular systems are coupled to various high-frequency molecular vibrations, which can cause the spectral beats hardly distinguishable from those created by purely electronic coherences. Models containing damped, undamped, and overdamped vibrational modes coupled to an electronic molecular transition are discussed in this paper in context of linear absorption and two-dimensional electronic spectroscopy. Analysis of different types of bath models demonstrates how do vibrations map onto two-dimensional spectra and how the damping strength of the coherent vibrational modes can be resolved from spectroscopic signals.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号