首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
Background noise reduces the depth of the low-frequency envelope modulations known to be important for speech intelligibility. The relative strength of the target and masker envelope modulations can be quantified using a modulation signal-to-noise ratio, (S/N)(mod), measure. Such a measure can be used in noise-suppression algorithms to extract target-relevant modulations from the corrupted (target + masker) envelopes for potential improvement in speech intelligibility. In the present study, envelopes are decomposed in the modulation spectral domain into a number of channels spanning the range of 0-30 Hz. Target-dominant modulations are identified and retained in each channel based on the (S/N)(mod) selection criterion, while modulations which potentially interfere with perception of the target (i.e., those dominated by the masker) are discarded. The impact of modulation-selective processing on the speech-reception threshold for sentences in noise is assessed with normal-hearing listeners. Results indicate that the intelligibility of noise-masked speech can be improved by as much as 13 dB when preserving target-dominant modulations, present up to a modulation frequency of 18 Hz, while discarding masker-dominant modulations from the mixture envelopes.  相似文献   

2.
Stone et al. [J. Acoust. Soc Am. 130, 2874-2881 (2011)], using vocoder processing, showed that the envelope modulations of a notionally steady noise were more effective than the envelope energy as a masker of speech. Here the same effect is demonstrated using non-vocoded signals. Speech was filtered into 28 channels. A masker centered on each channel was added to the channel signal at a target-to-background ratio of -5 or -10 dB. Maskers were sinusoids or noise bands with bandwidth 1/3 or 1 ERB(N) (ERB(N) being the bandwidth of "normal" auditory filters), synthesized with Gaussian (GN) or low-noise (LNN) statistics. To minimize peripheral interactions between maskers, odd-numbered channels were presented to one ear and even to the other. Speech intelligibility was assessed in the presence of each "steady" masker and that masker 100% sinusoidally amplitude modulated (SAM) at 8 Hz. Intelligibility decreased with increasing envelope fluctuation of the maskers. Masking release, the difference in intelligibility between the SAM and its "steady" counterpart, increased with bandwidth from near-zero to around 50 percentage points for the 1-ERB(N) GN. It is concluded that the sinusoidal and GN maskers behaved primarily as energetic and modulation maskers, respectively.  相似文献   

3.
The application of the ideal binary mask to an auditory mixture has been shown to yield substantial improvements in intelligibility. This mask is commonly applied to the time-frequency (T-F) representation of a mixture signal and eliminates portions of a signal below a signal-to-noise-ratio (SNR) threshold while allowing others to pass through intact. The factors influencing intelligibility of ideal binary-masked speech are not well understood and are examined in the present study. Specifically, the effects of the local SNR threshold, input SNR level, masker type, and errors introduced in estimating the ideal mask are examined. Consistent with previous studies, intelligibility of binary-masked stimuli is quite high even at -10 dB SNR for all maskers tested. Performance was affected the most when the masker dominated T-F units were wrongly labeled as target-dominated T-F units. Performance plateaued near 100% correct for SNR thresholds ranging from -20 to 5 dB. The existence of the plateau region suggests that it is the pattern of the ideal binary mask that matters the most rather than the local SNR of each T-F unit. This pattern directs the listener's attention to where the target is and enables them to segregate speech effectively in multitalker environments.  相似文献   

4.
Electrical field interaction caused by current spread in a cochlear implant was modeled in an explicit way in an acoustic model (the SPREAD model) presented to six listeners with normal hearing. The typical processing of cochlear implants was modeled more closely than in traditional acoustic models by careful selection of parameters related to current spread or parameters that could amplify the electrical field interactions caused by current spread. These parameters were the insertion depth, electrode spacing, electrical dynamic range, and dynamic range compression function. The hypothesis was that current spread could account for the asymptote in performance in speech intelligibility experiments observed at around seven stimulation channels in a number of cochlear implant studies. Speech intelligibility for sentences, vowels, and consonants at three noise levels (SNR of +15 dB, +10 dB, and +5 dB) was measured as a function of the number of spectral channels (4, 7, and 16). The SPREAD model appears to explain the asymptote in speech intelligibility at seven channels for all noise levels for all speech material used in this study. It is shown that the compressive amplitude mapping used in cochlear implants can have a detrimental effect on the number of effective channels.  相似文献   

5.
Most information in speech is carried in spectral changes over time, rather than in static spectral shape per se. A form of signal processing aimed at enhancing spectral changes over time was developed and evaluated using hearing-impaired listeners. The signal processing was based on the overlap-add method, and the degree and type of enhancement could be manipulated via four parameters. Two experiments were conducted to assess speech intelligibility and clarity preferences. Three sets of parameter values (one corresponding to a control condition), two types of masker (steady speech-spectrum noise and two-talker speech) and two signal-to-masker ratios (SMRs) were used for each masker type. Generally, the effects of the processing were small, although intelligibility was improved by about 8 percentage points relative to the control condition for one set of parameter values using the steady noise masker at -6 dB SMR. The processed signals were not preferred over those for the control condition, except for the steady noise masker at -6 dB SMR. Further work is needed to determine whether tailoring the processing to the characteristics of the individual hearing-impaired listener is beneficial.  相似文献   

6.
When a target-speech/masker mixture is processed with the signal-separation technique, ideal binary mask (IBM), intelligibility of target speech is remarkably improved in both normal-hearing listeners and hearing-impaired listeners. Intelligibility of speech can also be improved by filling in speech gaps with un-modulated broadband noise. This study investigated whether intelligibility of target speech in the IBM-treated target-speech/masker mixture can be further improved by adding a broadband-noise background. The results of this study show that following the IBM manipulation, which remarkably released target speech from speech-spectrum noise, foreign-speech, or native-speech masking (experiment 1), adding a broadband-noise background with the signal-to-noise ratio no less than 4 dB significantly improved intelligibility of target speech when the masker was either noise (experiment 2) or speech (experiment 3). The results suggest that since adding the noise background shallows the areas of silence in the time-frequency domain of the IBM-treated target-speech/masker mixture, the abruption of transient changes in the mixture is smoothed and the perceived continuity of target-speech components becomes enhanced, leading to improved target-speech intelligibility. The findings are useful for advancing computational auditory scene analysis, hearing-aid/cochlear-implant designs, and understanding of speech perception under "cocktail-party" conditions.  相似文献   

7.
Most binary-mask studies assume a fine time-frequency representation of the signal that may not be available in some applications (e.g., cochlear implants). This study assesses the effect of spectral resolution on intelligibility of ideal-binary masked speech. In Experiment 1, speech corrupted in noise at -5 to 5 dB signal-to-noise ratio (SNR) was filtered into 6-32 channels and synthesized using the ideal binary mask. Results with normal-hearing listeners indicated substantial improvements in intelligibility with 24-32 channels, particularly in -5 dB SNR. Results from Experiment 2 indicated that having access to the ideal binary mask in the F1/F2 region is sufficient for good performance.  相似文献   

8.
The conventional articulation index (AI) measure cannot be applied in situations where non-linear operations are involved and additive noise is present. This is because the definitions of the target and masker signals become vague following non-linear processing, as both the target and masker signals are affected. The aim of the present work is to modify the basic form of the AI measure to account for non-linear processing. This was done using a new definition of the output or effective SNR obtained following non-linear processing. The proposed output SNR definition for a specific band was designed to handle cases where the non-linear processing affects predominantly the target signal rather than the masker signal. The proposed measure also takes into consideration the fact that the input SNR in a specific band cannot be improved following any form of non-linear processing. Overall, the proposed measure quantifies the proportion of input band SNR preserved or transmitted in each band after non-linear processing. High correlation (r?=?0.9) was obtained with the proposed measure when evaluated with intelligibility scores obtained by normal-hearing listeners in 72 noisy conditions involving noise-suppressed speech corrupted in four different real-world maskers.  相似文献   

9.
Although most recent multitalker research has emphasized the importance of binaural cues, monaural cues can play an equally important role in the perception of multiple simultaneous speech signals. In this experiment, the intelligibility of a target phrase masked by a single competing masker phrase was measured as a function of signal-to-noise ratio (SNR) with same-talker, same-sex, and different-sex target and masker voices. The results indicate that informational masking, rather than energetic masking, dominated performance in this experiment. The amount of masking was highly dependent on the similarity of the target and masker voices: performance was best when different-sex talkers were used and worst when the same talker was used for target and masker. Performance did not, however, improve monotonically with increasing SNR. Intelligibility generally plateaued at SNRs below 0 dB and, in some cases, intensity differences between the target and masking voices produced substantial improvements in performance with decreasing SNR. The results indicate that informational and energetic masking play substantially different roles in the perception of competing speech messages.  相似文献   

10.
The effects of intensity on monosyllabic word recognition were studied in adults with normal hearing and mild-to-moderate sensorineural hearing loss. The stimuli were bandlimited NU#6 word lists presented in quiet and talker-spectrum-matched noise. Speech levels ranged from 64 to 99 dB SPL and S/N ratios from 28 to -4 dB. In quiet, the performance of normal-hearing subjects remained essentially constant in noise, at a fixed S/N ratio, it decreased as a linear function of speech level. Hearing-impaired subjects performed like normal-hearing subjects tested in noise when the data were corrected for the effects of audibility loss. From these and other results, it was concluded that: (1) speech intelligibility in noise decreases when speech levels exceed 69 dB SPL and the S/N ratio remains constant; (2) the effects of speech and noise level are synergistic; (3) the deterioration in intelligibility can be modeled as a relative increase in the effective masking level; (4) normal-hearing and hearing-impaired subjects are affected similarly by increased signal level when differences in speech audibility are considered; (5) the negative effects of increasing speech and noise levels on speech recognition are similar for all adult subjects, at least up to 80 years; and (6) the effective dynamic range of speech may be larger than the commonly assumed value of 30 dB.  相似文献   

11.
Although many studies have shown that intelligibility improves when a speech signal and an interfering sound source are spatially separated in azimuth, little is known about the effect that spatial separation in distance has on the perception of competing sound sources near the head. In this experiment, head-related transfer functions (HRTFs) were used to process stimuli in order to simulate a target talker and a masking sound located at different distances along the listener's interaural axis. One of the signals was always presented at a distance of 1 m, and the other signal was presented 1 m, 25 cm, or 12 cm from the center of the listener's head. The results show that distance separation has very different effects on speech segregation for different types of maskers. When speech-shaped noise was used as the masker, most of the intelligibility advantages of spatial separation could be accounted for by spectral differences in the target and masking signals at the ear with the higher signal-to-noise ratio (SNR). When a same-sex talker was used as the masker, the intelligibility advantages of spatial separation in distance were dominated by binaural effects that produced the same performance improvements as a 4-5-dB increase in the SNR of a diotic stimulus. These results suggest that distance-dependent changes in the interaural difference cues of nearby sources play a much larger role in the reduction of the informational masking produced by an interfering speech signal than in the reduction of the energetic masking produced by an interfering noise source.  相似文献   

12.
Little is known about the extent to which reverberation affects speech intelligibility by cochlear implant (CI) listeners. Experiment 1 assessed CI users' performance using Institute of Electrical and Electronics Engineers (IEEE) sentences corrupted with varying degrees of reverberation. Reverberation times of 0.30, 0.60, 0.80, and 1.0 s were used. Results indicated that for all subjects tested, speech intelligibility decreased exponentially with an increase in reverberation time. A decaying-exponential model provided an excellent fit to the data. Experiment 2 evaluated (offline) a speech coding strategy for reverberation suppression using a channel-selection criterion based on the signal-to-reverberant ratio (SRR) of individual frequency channels. The SRR reflects implicitly the ratio of the energies of the signal originating from the early (and direct) reflections and the signal originating from the late reflections. Channels with SRR larger than a preset threshold were selected, while channels with SRR smaller than the threshold were zeroed out. Results in a highly reverberant scenario indicated that the proposed strategy led to substantial gains (over 60 percentage points) in speech intelligibility over the subjects' daily strategy. Further analysis indicated that the proposed channel-selection criterion reduces the temporal envelope smearing effects introduced by reverberation and also diminishes the self-masking effects responsible for flattened formants.  相似文献   

13.
Formant discrimination for isolated vowels presented in noise was investigated for normal-hearing listeners. Discrimination thresholds for F1 and F2, for the seven American English vowels /i, I, epsilon, ae, [symbol see text], a, u/, were measured under two types of noise, long-term speech-shaped noise (LTSS) and multitalker babble, and also under quiet listening conditions. Signal-to-noise ratios (SNR) varied from -4 to +4 dB in steps of 2 dB. All three factors, formant frequency, signal-to-noise ratio, and noise type, had significant effects on vowel formant discrimination. Significant interactions among the three factors showed that threshold-frequency functions depended on SNR and noise type. The thresholds at the lowest levels of SNR were highly elevated by a factor of about 3 compared to those in quiet. The masking functions (threshold vs SNR) were well described by a negative exponential over F1 and F2 for both LTSS and babble noise. Speech-shaped noise was a slightly more effective masker than multitalker babble, presumably reflecting small benefits (1.5 dB) due to the temporal variation of the babble.  相似文献   

14.
Thresholds for the detection of harmonic complex tones in noise were measured as a function of masker level. The rms level of the masker ranged from 40 to 70 dB SPL in 10-dB steps. The tones had a fundamental frequency (F0) of 62.5 or 250 Hz, and components were added in either cosine or random phase. The complex tones and the noise were bandpass filtered into the same frequency region, from the tenth harmonic up to 5 kHz. In a different condition, the roles of masker and signal were reversed, keeping all other parameters the same; subjects had to detect the noise in the presence of a harmonic tone masker. In both conditions, the masker was either gated synchronously with the 700-ms signal, or it started 400 ms before and stopped 200 ms after the signal. The results showed a large asymmetry in the effectiveness of masking between the tones and noise. Even though signal and masker had the same bandwidth, the noise was a more effective masker than the complex tone. The degree of asymmetry depended on F0, component phase, and the level of the masker. The maximum difference between masked thresholds for tone and noise was about 28 dB; this occurred when the F0 was 62.5 Hz, the components were in cosine phase, and the masker level was 70 dB SPL. In most conditions, the growth-of-masking functions had slopes close to 1 (on a dB versus dB scale). However, for the cosine-phase tone masker with an F0 of 62.5 Hz, a 10-dB increase in masker level led to an increase in masked threshold of the noise of only 3.7 dB, on average. We suggest that the results for this condition are strongly affected by the active mechanism in the cochlea.  相似文献   

15.
周健  郑文明  王青云  赵力 《声学学报》2014,39(4):501-508
提出两种基于非对称代价函数的耳语音增强算法,将语音增强过程中的放大失真和压缩失真区分对待。Modified ItakuraSaito (MIS)算法对放大失真给予更多的惩罚,而Kullback-Leibler (KL)算法则对压缩失真给予更多的惩罚。实验结果表明,在低于—6 dB的低信噪比情况中,经MIS算法增强后的耳语音的可懂度相比传统算法有显著提高;而KL算法则获得了同最小均方误差语音增强算法近似的可懂度提高效果,证实了耳语音中的放大失真和压缩失真对于耳语音可懂度的影响并不相同,低信噪比时较大的压缩失真有助于提高耳语音可懂度,而高信噪比时的压缩失真对耳语音可懂度影响较小。   相似文献   

16.
Listening conditions in everyday life typically include a combination of reverberation and nonstationary background noise. It is well known that sentence intelligibility is adversely affected by these factors. To assess their combined effects, an approach is introduced which combines two methods of predicting speech intelligibility, the extended speech intelligibility index (ESII) and the speech transmission index. First, the effects of reverberation on nonstationary noise (i.e., reduction of masker modulations) and on speech modulations are evaluated separately. Subsequently, the ESII is applied to predict the speech reception threshold (SRT) in the masker with reduced modulations. To validate this approach, SRTs were measured for ten normal-hearing listeners, in various combinations of nonstationary noise and artificially created reverberation. After taking the characteristics of the speech corpus into account, results show that the approach accurately predicts SRTs in nonstationary noise and reverberation for normal-hearing listeners. Furthermore, it is shown that, when reverberation is present, the benefit from masker fluctuations may be substantially reduced.  相似文献   

17.
This work deals with electric-acoustic stimulation (EAS), which keeps the low frequency acoustic information and electrically codes the high frequencies of the signal. One of the goals of the coding strategies is to limit the phenomenon of channel interaction, which can occur in CIs. The “N-of-M” strategy, where only a subset of electrode channels is stimulated, may be of advantage. Generally, this processing is associated with a pre-emphasis filter. Two important parameters for the N-of-M strategy are the number of active channels (N) and the updating rate; the latter corresponds to the stimulation rate. M is the number of electrical channels.The goal of this study was to investigate the influence of these parameters on speech intelligibility in EAS. The signal was presented, in simulation, to normal-hearing (NH) subjects in acoustic (A), electric (E) and electric-acoustic conditions. Recognition performance was measured in quiet and in the presence of background noise (cafeteria noise).Signal-to-noise ratios (SNRs) ranged from 0 to +12 dB. Fifteen listeners participated in the experiment. The N values ranged from 2 to 10 (out of 10); M was 10. The frame updating rate was 250 updates per second (ups) and 1000 ups.Results showed that increasing N from 2 to 10 improved speech intelligibility, especially in the presence of the background noise, under E and EAS conditions. In noisy situations, 2/10 coupled with a high-pass pre-emphasis filter led to results similar to the 10/10 condition. Changing the frame rate from 250 ups to 1000 ups did not modify the performance.Future investigations on patients using EAS are now needed to validate the performance seen with NH listeners. Above all, in the strategy 2 out of 10, the number of pulses per second can be divided by 20, and when the pre-emphasis is used only a slight decrease in performance is expected; this is of interest when interaction between the electrodes corrupts the performance.  相似文献   

18.
The effects on speech intelligibility of three different noise reduction algorithms (spectral subtraction, minimal mean squared error spectral estimation, and subspace analysis) were evaluated in two types of noise (car and babble) over a 12 dB range of signal-to-noise ratios (SNRs). Results from these listening experiments showed that most algorithms deteriorated intelligibility scores. Modeling of the results with a logit-shaped psychometric function showed that the degradation in intelligibility scores was largely congruent with a constant shift in SNR, although some additional degradation was observed at two SNRs, suggesting a limited interaction between the effects of noise suppression and SNR.  相似文献   

19.
When listeners hear a target signal in the presence of competing sounds, they are quite good at extracting information at instances when the local signal-to-noise ratio of the target is most favorable. Previous research suggests that listeners can easily understand a periodically interrupted target when it is interleaved with noise. It is not clear if this ability extends to the case where an interrupted target is alternated with a speech masker rather than noise. This study examined speech intelligibility in the presence of noise or speech maskers, which were either continuous or interrupted at one of six rates between 4 and 128 Hz. Results indicated that with noise maskers, listeners performed significantly better with interrupted, rather than continuous maskers. With speech maskers, however, performance was better in continuous, rather than interrupted masker conditions. Presumably the listeners used continuity as a cue to distinguish the continuous masker from the interrupted target. Intelligibility in the interrupted masker condition was improved by introducing a pitch difference between the target and speech masker. These results highlight the role that target-masker differences in continuity and pitch play in the segregation of competing speech signals.  相似文献   

20.
Internal noise generated by hearing-aid circuits can be audible and objectionable to aid users, and may lead to the rejection of hearing aids. Two expansion algorithms were developed to suppress internal noise below a threshold level. The multiple-channel algorithm's expansion thresholds followed the 55-dB SPL long-term average speech spectrum, while the single-channel algorithm suppressed sounds below 45 dBA. With the recommended settings in static conditions, the single-channel algorithm provided lower noise levels, which were perceived as quieter by most normal-hearing participants. However, in dynamic conditions "pumping" noises were more noticeable with the single-channel algorithm. For impaired-hearing listeners fitted with the ADRO amplification strategy, both algorithms maintained speech understanding for words in sentences presented at 55 dB SPL in quiet (99.3% correct). Mean sentence reception thresholds in quiet were 39.4, 40.7, and 41.8 dB SPL without noise suppression, and with the single- and multiple-channel algorithms, respectively. The increase in the sentence reception threshold was statistically significant for the multiple-channel algorithm, but not the single-channel algorithm. Thus, both algorithms suppressed noise without affecting the intelligibility of speech presented at 55 dB SPL, with the single-channel algorithm providing marginally greater noise suppression in static conditions, and the multiple-channel algorithm avoiding pumping noises.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号