首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The applicability of pair potential functions to liquid alkali metals is questionable. On the one hand, some recent reports in the literature suggest the validity of two-parameter pair-wise additive Lennard-Jones (LJ) potentials for liquid alkali metals. On the other hand, there are some reports suggesting the inaccuracy of pair potential functions for liquid metals. In this work, we have performed extensive molecular dynamics simulations of vapor-liquid phase equilibria in potassium to check the validity of the proposed LJ potentials and to improve their accuracy by changing the LJ exponents and taking into account the temperaturedependencies of the potential parameters. We have calculated the orthobaric liquid and vapor densities of potassium using LJ (12–6), LJ (8.5–4) and LJ (5–4), effective pair potential energy functions. The results show that using an LJ (8.5–4) potential energy function with temperature-independent parameters, ε and σ, is inadequate to account for the vapor-liquid coexistence properties of potassium. Taking into account the temperature-dependencies of the LJ parameters, ε(T) and σ(T), we obtained the densities of coexisting liquid and vapor potassium in a much better agreement with experimental data. Changing the magnitude of repulsive and attractive contributions to the potential energy function shows that a two-parameter LJ (5–4) potential can well reproduce the densities of liquid and vapor potassium. The results show that LJ (5–4) potential with temperature-dependent parameters produces the densities of liquid and vapor potassium more accurately, compared to the results obtained using LJ (12–6) and LJ (8.5–4) potential energy functions.  相似文献   

2.
3.
A modified Wang-Landau density-of-states sampling approach has been performed to calculate the excess entropy of liquid metals, Lennard-Jones (LJ) system and liquid Si under NVT conditions; and it is then the residual multiparticle entropy (S(RMPE)) is obtained by subtraction of the pair correlation entropy. The temperature dependence of S(RMPE) has been investigated along with the temperature dependence of the local atomic-level pressure and the pair correlation functions. Our results suggest that the temperature dependence of the pair correlation entropy is well described by T(-1) scaling while T(-0.4) scaling well describes the relationship between the excess entropy and temperature. For liquid metals and LJ system, the -S(RMPE) versus temperature curves show positive correlations and the -S(RMPE) of liquid Si is shown to have a negative correlation with temperature, the phase-ordering criterion (based on the S(RMPE)) for predicting freezing transition works in liquid metals and LJ but fails in liquid Si. The local atomic-level pressure scaled with the virial pressure (σ(al)/σ(av)) exhibits the much similar temperature dependence as -S(RMPE) for all studied systems, even though simple liquid metals and liquid Si exhibit opposite temperature dependence in both σ(al)/σ(av) and -S(RMPE). The further analysis shows that the competing properties of the two effects due to localization and free volume on the S(RMPE) exist in simple liquid metals and LJ system but disappear in liquid Si, which may be the critical reason of the failure of the phase-ordering criterion in liquid Si.  相似文献   

4.
研究离子液体体系的微观结构和分子间相互作用具有重要意义.本文对1-丁基-3-甲基咪唑六氟磷酸盐([Bmim][PF6])+水+乙醇和[Bmim][PF6]+水+异丙醇三元体系进行了分子模拟研究,计算了径向分布函数和不同组成的水-醇混合溶剂与离子液体阴阳离子间的相互作用能,并将其分解为库仑相互作用能和Lennard-Jones(LJ)势能.在此基础上,研究了溶液体系的微观结构、分子间相互作用和相行为.结果表明,水倾向于与离子液体阴离子和阳离子极性部分作用,醇倾向于与阴离子和阳离子非极性部分作用;库仑力主导阴离子-溶剂相互作用,色散力主导阳离子-溶剂相互作用,阴阳离子的缔合状态对色散力影响较小,对库仑力的影响非常显著.  相似文献   

5.
研究离子液体体系的微观结构和分子间相互作用具有重要意义. 本文对1-丁基-3-甲基咪唑六氟磷酸盐([Bmim][PF6])+水+乙醇和[Bmim][PF6]+水+异丙醇三元体系进行了分子模拟研究, 计算了径向分布函数和不同组成的水-醇混合溶剂与离子液体阴阳离子间的相互作用能, 并将其分解为库仑相互作用能和Lennard-Jones(LJ)势能. 在此基础上, 研究了溶液体系的微观结构、分子间相互作用和相行为. 结果表明, 水倾向于与离子液体阴离子和阳离子极性部分作用, 醇倾向于与阴离子和阳离子非极性部分作用; 库仑力主导阴离子-溶剂相互作用, 色散力主导阳离子-溶剂相互作用, 阴阳离子的缔合状态对色散力影响较小, 对库仑力的影响非常显著.  相似文献   

6.
Theoretically-based van der Waals one-fluid (vdW1) mixing rules are derived for Lennard–Jones (LJ) chain mixtures. The rules provide equivalent one-fluid segment parameters for LJ size (σ) and energy () parameter as well as chain length (m) based on the parameters of the individual mixture components and the component mole fractions. The mixing rules are tested by performing Monte Carlo simulations of eight different binary mixtures and the equivalent vdW1 pure fluid, each at three densities. The simulations test the effects of changing LJ size parameter, LJ energy parameter and chain length individually and together. The effects of mole fraction and density are also examined. The mixing rules are tested for accuracy in predicting compressibility factors and radial distribution functions. It is found that the vdW1 rules provide excellent agreement when size and energy parameter are varied. Good agreement is found for mixtures with different chain lengths. The discrepancy is worst at very high densities when all component parameters are varied simultaneously.  相似文献   

7.
付东  闫淑梅  王学敏 《中国化学》2008,26(2):269-275
分别用改进的基础测量理论和平均球近似理论表达短程作用和长程作用对四缔合Lennard-Jones流体的过剩自由能的贡献. 在密度函泛理论的框架下, 研究了平均密度等温线, 密度分布, 未缔合分子在平衡汽相和液相中的分布, 相平衡以及平衡时的界面张力等热力学性质. 分析了缔合能量, 流体-固体作用和孔宽对受限于纳米狭缝中的四缔合Lennard-Jones流体相行为的影响.  相似文献   

8.
9.
New Monte Carlo simulations are presented for nonionic surfactant adsorption at the liquid/vapor interface of a monatomic solvent specifically investigating the roles of tail attraction and binary mixtures of different tail lengths. Surfactant molecules consist of an amphiphilic chain with a solvophilic head and a solvophobic tail. All molecules in the system, solvent and surfactant, are characterized by the Lennard-Jones (LJ) potential. Adjacent atoms along the surfactant chain are connected by finitely extensible harmonic springs. Solvent molecules move via the Metropolis random-walk algorithm, whereas surfactant molecules move according to the continuum configurational bias Monte Carlo (CBMC) method. We generate thermodynamic adsorption and surface-tension isotherms and compare results quantitatively to single-surfactant adsorption (Langmuir, 2007, 23, 1835). Surfactant tail groups with attractive interaction lead to cooperative adsorption at high surface coverage and higher maximum adsorption at the interface than those without. Moreover, adsorption and surface-tension isotherms with and without tail attraction are identical at low concentrations, deviating only near maximum coverage. Simulated binary mixtures of surfactants with differing lengths give intermediate behavior between that of the corresponding single-surfactant adsorption and surface-tension isotherms both with and without tail attraction. We successfully predict simulated mixture results with the thermodynamically consistent ideal adsorbed solution (IAS) theory for binary mixtures of unequal-sized surfactants using only the simulations from the single surfactants. Ultimately, we establish that a coarse-grained LJ surfactant system is useful for understanding actual surfactant systems when tail attraction is important and for unequal-sized mixtures of amphiphiles.  相似文献   

10.
We present a theoretical approach which maps polymer blends onto mixtures of soft-colloidal particles. The analytical mesoscale pair correlation functions reproduce well data from united atom molecular dynamics simulations of polyolefin mixtures without fitting parameters. The theory exactly recovers the analytical expressions for density and concentration fluctuation structure factors of soft-colloidal mixtures (liquid alloys).  相似文献   

11.
A scaling law relating the shear viscosity of one and two component liquid mixtures to their excess thermodynamic entropies defined through pair correlation functions is derived by approximating the mode coupling theory expressions of frictions and then combining with the Stokes-Einstein relation. Molecular dynamics simulation has been performed to generate the data of shear viscosity for one and two component liquid mixtures to test the derived scaling law. The derived scaling laws yield numerical results of shear viscosity for one component and two component liquid mixtures, which are in excellent agreement with the molecular dynamics simulation results for a wide range of density and interaction potential.  相似文献   

12.
The viscosity coefficients for the gaseous states of N2 and O2 and their mixtures are determined at zero and moderately density regimes. The Lennard‐Jones 12–6 (LJ 12–6) potential energy function is used as the initial model potential required y the technique. The interaction potential energies from the inversion procedure reproduce the viscosity commensurate to the best measurements. The initial density dependence of gaseous viscosity coefficient according to the Rainwater‐Friend theory, which was given by Najafi et al., has been considered for pure N2 and pure O2.  相似文献   

13.
We used molecular dynamics computer simulations to test an approximate scaling principle that conjectures that two equilibrium atomic liquids have very similar dynamical properties if they have the same density and similar static pair correlation functions when the length scales of the two liquids are adjusted appropriately, even if they have different interatomic potentials and different temperatures. The simulations were performed on two types of model atomic liquids at various temperatures at the same density. In the first type, the interatomic potential is the Lennard-Jones potential (LJ). In the second type, the interatomic potential is the repulsive part of the Lennard-Jones potential (RLJ). We identified pairs of systems that have very similar pair correlation functions despite the fact that they had different potentials. Each pair consisted of an LJ liquid at a specific temperature and a corresponding RLJ liquid at a lower temperature. We compared various time correlation functions and transport coefficients of the two systems in each pair. Many dynamical properties are very similar in each pair, in accordance with the approximate scaling principle, whereas others are significantly different. The results indicate that certain dynamical properties are very insensitive to large changes in the interatomic potential that leave the pair correlation function largely unchanged, whereas other dynamical properties are much more sensitive to such changes in the potential. The transport coefficients for diffusion and viscosity are among the dynamical properties that are insensitive to such changes in the potential, and this may be part of the reason transport properties of many fluids have been calculated or rationalized in terms of a simple hard sphere model of liquids.  相似文献   

14.
Full details are given of a recent time-of-flight neutron diffraction experiment in which partial pair correlation functions for liquid water are extracted by isotope substitution. Measurements of differential cross sections of mixtures of heavy and light water are made, and by performing the experiment at the high neutron energies available at a pulsed neutron source (Los Alamos) the magnitude of dynamic corrections to the data is reduced. The problematic hydrogen incoherent scattering is removed by a subtraction technique which avoids reference to dynamic models of the liquid. The results, although they show good agreement with computer simulations, show serious qualitative differences with other neutron experiments on water, and it is suggested these discrepancies are a result of lack of attention to the unusual properties of hydrogen as a scatterer of neutrons.  相似文献   

15.
Excess thermodynamic functions (free energies, enthalpies and entropies of mixing) have been obtained from measurements of vapour pressures, together with excess volumes of mixing, for mixtures of hexafluorobenzene with carbon tetrachloride and with perfluoromethyl-cyclohexane (tetradecafluoromethylcyclohexane). Deviations from thermodynamic ideality are large, although the systems are completely miscible. Critical temperatures of the mixtures are also reported. A correlation between the data, anticipated from a simple model for mixtures of asymmetric molecules, does not obtain.  相似文献   

16.
《Fluid Phase Equilibria》2002,193(1-2):179-189
We report molecular dynamics (MD) simulation data for three simulated fluids: a homopolymer with 16 tangent Lennard–Jones (LJ) segments at the reduced temperature of 1.25, an equimolar binary homopolymer fluid with eight tangent LJ segments at 15 state points, and three corresponding copolymers with equimolar segment fraction and varying segment distribution at 15 state points. We find that the compressibility factors and energies do not change as the segment distribution varies in the copolymer example. The simulation data are compared with thermodynamic perturbation theory (TPT1) calculations. The TPT1 compressibility factors compare favorably with the MD data at high reduced temperatures but differ significantly at lower temperatures.  相似文献   

17.
Cluster studies have attracted much interest in the past decades because of their extraordinary properties. To describe the interaction between atoms or molecules and predict the energies and structures, potential functions are developed. However, different potentials generally produce different structures and energies for a cluster. To study the effect of potentials on the structure of a cluster, He clusters in the size range of 13-140 are investigated by Lennard-Jones (LJ), Pirani, and Hartree-Fock-dispersion individual damping (HFD-ID) potential with dynamic lattice searching (DLS) method. Potential function curves, cluster structures, bonds, and energies of the global minima are compared. The results show that cluster energies decrease with the values of the potential functions, the differences between structures depend upon the disagreements of the potentials, and the preferable motif of a cluster changes from icosahedron to decahedron with the increase of the derivative of the short-range part of the potentials.  相似文献   

18.
As a first step in the computational prediction of drug solubility the free energy of hydration, DeltaG*(vw) in TIP4P water has been computed for a data set of 48 drug molecules using the free energy of perturbation method and the optimized potential for liquid simulations all-atom force field. The simulations were performed in two steps, where first the Coulomb and then the Lennard-Jones interactions between the solute and the water molecules were scaled down from full to zero strength to provide physical understanding and simpler predictive models. The results have been interpreted using a theory assuming DeltaG*(vw) = A(MS)gamma + E(LJ) + E(C)/2 where A(MS) is the molecular surface area, gamma is the water-vapor surface tension, and E(LJ) and E(C) are the solute-water Lennard-Jones and Coulomb interaction energies, respectively. It was found that by a proper definition of the molecular surface area our results as well as several results from the literature were found to be in quantitative agreement using the macroscopic surface tension of TIP4P water. This is in contrast to the surface tension for water around a spherical cavity that previously has been shown to be dependent on the size of the cavity up to a radius of approximately 1 nm. The step of scaling down the electrostatic interaction can be represented by linear response theory.  相似文献   

19.
The lowest icosahedral and decahedral energies of LJ1001-1610 clusters are obtained using a greedy search method (GSM) based on lattice construction. By comparing the lowest energies of icosahedral and decahedral clusters with the same atoms, the structural transition of LJ clusters is studied. Results show that the critical size from icosahedra to decahedra is located at N = 1034. When the cluster size is larger than 1034, the optimal structures are decahedra except the LJ1367-1422 clusters near the magic number, 1402, of icosahedra. However, the energies of icosahedra near the next magic number, 2044, are higher than that of decahedra, which implies that decahedra will be the optimal structure when the cluster size is larger than 1422, even for those clusters near the magic numbers of icosahedra.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号