首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Laser performance of 1064 nm domestic Nd:YAG ceramic lasers for 885 nm direct pumping and 808 nm traditional pumping are compared. Higher slope efficiency of 34% and maximum output power of 16.5 W are obtained for the 885nm pump with a 6ram length 1 at.% Nd:YAG ceramic. The advantages for 885nm direct pumping are discussed in detail. This pumping scheme for highly doping a Nd:YAG ceramic laser is considered as an available way to generate high power and good beam quality simultaneously.  相似文献   

2.
Pulsed UV lasers at the wavelengths of 374 and 280 nm are realized by cascaded second harmonic generation (SHG) and sum frequency generation (SFG) processes using a Nd:YAG laser at 1123 nm. The Nd:YAG laser is longitudinally pumped and passively Q-switched, and it has a high peak power of 3.2 kW. The UV peak powers at 280 and 374 nm are 100 and 310 W, with pulse lengths of 6 and 8 ns, respectively. Spectral broadening of 374 nm laser by stimulated Raman scattering is studied in single mode pure silica core UV fiber. Realizations of UV lasers enabling compact design at 280 and 374 nm wavelengths are demonstrated.  相似文献   

3.
New materials for optical cooling   总被引:3,自引:0,他引:3  
Well-characterized solid-state laser materials are evaluated for performance in optical refrigeration as well as radiation-balanced laser systems. New figures-of-merit are developed and applied to ytterbium-doped materials. Superior performance is predicted for high-cross-section tungstate materials. Photothermal deflection experiments on samples of Yb3+-doped KGd(WO4)2 confirm anti-Stokes fluorescence cooling. This is the first observation of optical cooling in a crystal. Received: 1 February 2000 / Revised version: 15 June 2000 / Published online: 13 September 2000  相似文献   

4.
We report an efficient diode-pumped Nd-doped Gadolinium gailium garnet (GGG) continuous-wave (CW) laser operating at 938nm. Laser action of 1.6at.% Nd-doped GGG crystais with different lengths and temperatures are aiso investigated. The maximum output power of 620mW is obtained at the incident pump power of 5.0 W with a slope efficiency of 15%.  相似文献   

5.
We report a high-effciency Nd:YAG laser operating at 1064 nm and 1319nm, respectively, thermally boosted pumped by an all-solid-state Q-switched Ti:sapphire laser at 885 nm. The maximum outputs of 825.4 m W and 459.4mW, at 1064nm and 1319nm respectively, are obtained in a 8-ram-thick 1.1 at.% Nd:YAG crystal with 2.1 W of incident pump power at 885nm, leading to a high slope efficiency with respect to the absorbed pump power of 68.5% and 42.0%. Comparative results obtained by the traditional pumping at 808nm are presented, showing that the slope efficiency and the threshold with respect to the absorbed pump power at 1064nm under the 885nm pumping are 12.2% higher and 7.3% lower than those of 808rim pumping. At 1319nm, the slope efficiency and the threshold with respect to the absorbed pump power under 885nm pumping are 9.9% higher and 3.5% lower than those of 808 nm pumping. The heat generation operating at 1064 nm and 1319 nm is reduced by 19.8% and 11.1%, respectively.  相似文献   

6.
4 laser. The amplified pulses were frequency-converted in the blue and in the UV by harmonic generation (doubling and tripling) in two lithium triborate (LBO) crystals. Received: 11 March 1997/Accepted: 24 April 1997  相似文献   

7.
We report on the generation of high average power, high repetition rate, and picosecond (ps) deep-ultraviolet (DUV) 177.3 nm laser. The DUV laser is produced by second-harmonic generation of a frequency-tripled mode-locked Nd: YVO4 laser (<15 ps, 80 MHz) with KBBF nonlinear crystal. The influence of different fundamental beam diameters on DUV output power and KBBF-SHG conversion efficiency are investigated. Under the 355 nm pump power of 7.5 W with beam diameter of 145 μm, 41 mW DUV output at 177.3 nm is obtained. To our knowledge, this is the highest average power for the 177.3 nm laser. Our results provide a power scaling by three times with respect to previous best works.  相似文献   

8.
A novel method is developed to obtain 1.05μm laser operation with a Yb:YAG laser. By using a Yb:YAG crystal with proper length and doping concentration, a femtosecond Yb: YAG laser is realized at the central wavelength of 1053nm. The measured pulse duration and spectral bandwidth (FWHM) are 170fs and 7nm; the repetition rate is 80 MHz. Under a power pump of 2 W, an average mode-locking power of 180mW is achieved.  相似文献   

9.
We report, for the first time, an efficient intra-cavity second-harmonic generation (SHG) at 1084 nm in a nonlinear optical crystal, BiB3O6(BIBO) at the direction of (θ?) = (170.1°, 90°), performed with a LD end-pumped cw Nd:YVO4 laser. With 590 mW diode pump power, a continuous-wave (cw) SHG output power of 19 mW at 542 nm yellow-green color has been obtained using a 1.5 mm-thick BIBO crystal. The optical conversion efficiency was 3.22%. It was found that the output wavelength could be 532 nm, 537 nm or 542 nm according to regulating the angle of BIBO.  相似文献   

10.
We report an L-shaped symmetrical co-folding-arm plane-plane diode pumped solid-state yellow laser at 589 nm by using intracavity sum-frequency mixing. By carefully designing the cavity and employing various techniques to optimize the laser’s specifications, a quasi-continuous-wave (QCW) free-oscillation yellow laser source, which has an average output power of 8.1 W, a beam quality factor of M2 = 2.3, and a repetition rate of 1.1 kHz, is developed. The generation of yellow laser at 589 nm is achieved by intracavity sum-frequency mixing between the laser lines at 1319 nm and 1064 nm of an Nd:YAG laser in a KTP crystal. To the best of our knowledge, the 8.1 W output at 589 nm is higher than any other diode pumped solid-state yellow laser generated by intracavity sum-frequency generation so far.  相似文献   

11.
LD side-pumped dual interconnected V-type quasi-continuous wave green laser has been demonstrated. The two Nd:YAG modules were placed in a plane-concave V-type resonator and a plane-concave straight cavity formed two stable operation beam of the 1064-nm fundamental frequency laser. Through acousto-optic Q-switched and frequency doubling crystal, two double-frequency laser beams arrived at the folded flat mirror, which were unidirectional output by the folded flat mirror at the end. As the pumped current was 50 A, the 532 nm green laser maximum average output power of 206 W at a repetition of 22.4 kHz was achieved with a pulse width of 201 ns and the largest single pulse energy of 9.2 mJ, corresponding to a peak power of 45.8 kW and a double frequency efficiency of 60.2%.  相似文献   

12.
We have achieved, for the first time to our knowledge, lasing in a new type of telluride-tungstate glass host doped with neodymium: Nd3+:(0.8)TeO2-(0.2)WO3. Lasing was obtained at 1065 nm with two samples containing 0.5 mol% and 1.0 mol% Nd2O3. During gain-switched operation, slope efficiencies of 12% and 10% were obtained with the 0.5 mol% and 1.0 mol% doped samples, respectively, at a pulse repetition rate of 1 kHz. Judd-Ofelt analysis was further employed to determine the emission cross section σe at 1065 nm from the absorption spectra and lifetime data. The emission cross section from the Judd-Ofelt analysis came to 3.23 ± 0.09 × 10−20 cm2, in reasonable agreement with the value of 2.0 ± 0.13 × 10−20 cm2 obtained from the analysis of laser threshold data.  相似文献   

13.
We have demonstrated an efficient diode-pumped passively Q-switched Nd:GdVO4 laser working at 1342 nm by using an uncoated V3+:YAG crystal as the saturable absorber, in which both a-cut and c-cut Nd:GdVO4 crystals are employed. At the maximum absorbed pump power of 9.45 W, the maximum average output power can reach 519 mW and 441 mW corresponding to the output coupler with different transmission of 3% and 10% by using an a-cut Nd:GdVO4 crystal at 1342 nm, while the shortest pulse duration could be as low as 21.7 ns and 22.3 ns with the repetition rate of 48.41 kHz and 53.25 kHz by using a c-cut Nd:GdVO4 crystal, corresponding to the output coupler with different transmission of 3% and 10% at 1342 nm, and the single Q-switched pulse energy are 6.67 uJ and 7.06 uJ, the pulse peak power are 307 W and 316 W, respectively. The experimental results show that c-cut Nd:GdVO4 laser can generate shorter pulse with higher peak power in comparison with a-cut one.  相似文献   

14.
An efficient and high-power diode-side-pumped cw 532nm green laser based on a V-shaped cavity geometry, and capable of generating 22.7 W green radiation with opticM conversion effciency of 8.31%, has been demonstrated. The laser is operated with rms noise amplitude of less than 1% and with M2-parameter of about 6.45 at the top of the output power. This laser has the potential for scaling to much higher output power.  相似文献   

15.
4+ :YAG passive element. Energies up to 1.1 J and 550 mJ, respectively, are obtained with a total efficiency close to 3%. Received: 29 May 1996  相似文献   

16.
Data on the ablation of Poly(Methyl MetAcylate) (PMMA) and Poly(2-Hydroxyethyl MetAcylate) (PHEMA) with 0%, 1% and 20% of Ethylene Glycol DiMethAcrylate (EGDMA) as crosslinking monomer by 193, 222 and 308 nm laser radiation are presented. Direct photoetching of PMMA at 308 nm is demonstrated for laser fluences ranging from 2 to 18 J/cm2. The ablation rate of PHEMA is lower than the corresponding to PMMA and decreases when the amount of EGDMA increases. The determination of the absorbed energy density required to initiate significant ablation suggests that the photoetching mechanism is similar for all the polymers studied and is a function of the irradiation wavelength. The Beer-Lambert law, the Srinivasan, Smrtic and Babu (SSB) theory and the kinetic model of the moving interface are used to analyze the experimental results. It is shown that only the moving interface theory fits well the etch rate for all the selected polymers at the three radiation wavelengths.  相似文献   

17.
The importance of excimer vibrational relaxation is manifested once again by the example of the low-pressure Kr/F2 gain medium excited by a short pulse. The pressure is determined at which a sharp fall of the population efficiency of low KrF(B) vibrational levels should appear. Time peculiarities of the gain are investigated analytically for short-pulse excitation operation.  相似文献   

18.
We reported the Ho:GdVO4 laser pumped by Tm-doped laser with a fiber Bragg grating. 2.03 W continuous-wave Ho:GdVO4 laser output power is obtained under 10.5 W incident pump power, with the optical-to-optical conversion efficiency and slope efficiency of 19.3% and 32.3%, respectively, at 7 °C. We can see that, the lower the temperature is, the better the laser output character is. The beam quality factor is M2 ∼ 1.29 measured by the traveling knife-edge method.  相似文献   

19.
20.
We report stable self-starting near-transform-limited 26-fs pulses at 250-mW output power from a Kerr-lens mode-locked (KLM) Cr4+:YAG laser using chirped mirrors in combination with prisms. The highest output power achieved in KLM regime was 600 mW at 55-fs pulse duration. The experimental results agree well with the results of theoretical analysis with respect to KLM self-starting ability and stability against continuous-wave and multi-pulse operation. Parameter ranges for stable transform-limited KLM pulses as well as the shortest achievable pulse durations are established. Using an InGaAs-InP semiconductor saturable absorber mirror we could obtain self-starting 57-fs pulses at the average output power of 200 mW. Two-photon absorption was found to be the main mechanism favoring the multiple-pulse operation. Received: 2 May 2002 / Revised version: 16 July 2002 / Published online: 8 January 2003 RID="*" ID="*"Corresponding author. Fax: +43-1/58801-38799, E-mail: sorokina@tuwien.ac.at  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号