首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 203 毫秒
1.
后台阶流动的数值模拟   总被引:6,自引:0,他引:6  
访述了大涡模拟的基本思想,指出大涡模拟的效率主要取决于四个因素,即流动中须有大尺度涡存在、合理的计算格式、合适的滤波器和亚格子应力模型。在深入考虑粘性不可压缩流Navier—Stokes方程各个子项作用的基础上,提出二阶全展开Euler—Taylor—Galerkin有限元方法作为大涡模拟的离散格式,并采用Gauss滤波器,对典型算例——后台阶处的流动进行大涡模拟,计算结果与相关文献符合的很好。从计算结果还可以看出大涡模拟与二阶全展开ETG有限元方法的结合在捕捉涡系及反映涡动时变过程方面具有明显的优势,说明大涡模拟适合于边界几何形状复杂区域流动的模拟。同时应用二阶全展开ETG有限元方法对低雷诺数粘性不可压缩后台阶流动进行了计算,得到与相关文献符合良好的计算结果,即该方法也可独立用于对低雷诺数粘性不可压缩流动的计算。  相似文献   

2.
在湍流数值模拟方法中,大涡模拟方法可以提供丰富的大涡旋信息,已逐渐成为复杂湍流问题数值研究的重要方法。而大涡模拟中,最重要的一环是尽量准确地构建能反映流场物理本质特征的亚格子应力模型。基于该思想,将一种新型的大涡模拟亚格子应力模型-Vreman亚格子应力模型用于高雷诺数三维后台阶流动的求解,计算结果与实验结果进行对比分析结果较吻合,验证了该模型的可靠性。这是对该模型用于无任何均匀流动方向的高雷诺数复杂湍流非定常流动的首次检验,计算结果优于基于传统的Smagorinsky涡粘性的动态亚格子模型。  相似文献   

3.
本文对具有固壁边界的二维粘性不可压缩定常流提出了一种四阶壁涡公式,并构造了一类非平凡的精确解。用两种具有代表性的内点差分格式及六种常用的壁涡公式(包括本文提出的一种),对本文所构造的雷诺数直到2000的一系列流动进行了数值求解,并以所构造的精确解为基准,分析和比较了这六种壁涡格式的精度、稳定性和收敛速度。计算结果表明,本文所提出的壁涡公式是这六种公式中最好的一种。本文数值实验中的一些结果对粘性不可压缩流固壁数值边界条件的处理可能具有一定的普遍意义。  相似文献   

4.
船用燃气轮机进气滤清器惯性级内的流场计算和实验验证   总被引:1,自引:0,他引:1  
本文提出了一套求解船用燃气轮机进气滤清器流道流场的数值方法,成功地计算了流道内流场的状态,给出了各种不同型号流道的气动特性,对指导滤清器的设计有较大的现实意义, 在这套方法中,我们应用上风差分来逼近二维、非定常、粘性、不可压缩流体非守恒型的N-S方程,提出了一种可计算雷诺数高达上万的粘性流的差分方程,考察了这种差分方程的稳定性,收敛性、精度和人工粘性,本文还提出了处理一些边界拐点处壁涡的计算方法,实际算例表明,使用本文提出的差分方程和壁涡处理方法给出的计算结果和实验吻合良好。  相似文献   

5.
船用气水分离器惯性级流场分析及阻力特性研究   总被引:4,自引:0,他引:4  
采用二阶全展开ETG有限元与大涡模拟(LES)相结合的算法,对120-20-35-3型船用气水分离器惯性级在不同雷诺数条下的流动进行了模拟,通过其中一组雷诺数条件下计算所得该实验件阻力系数与物理实验所得阻力系数相比较,确定出该雷诺数条件下采用大涡模拟时所需的亚格子应力模型常数,将该常数带入其它各组雷诺数条件下的计算中,并将计算结果与相同条件下的物理实验结果相比较,证实了该常数的通用性。该常数一经确定,对各雷诺数条件下的流场进行分析,结果反映出采用二阶全展开ETG有限元与大涡模拟(LES)相结合的算法可以捕捉到非常丰富的涡系及涡动的时变过程。在流场分析的基础上本文计算了该实验件内的能耗场,计算结果表明实验件内的能耗主要集中在大涡丰富的区段内。  相似文献   

6.
激励小尺度模式在湍流圆管射流中的应用   总被引:1,自引:0,他引:1  
严红  苏铭德 《力学学报》2000,32(5):513-522
采用非涡黏性的激励小尺度(Stimulated Small Scale)模式对空间发展的轴对称湍流圆管射流进行了大涡模拟。以雷诺数为10000的流动为例,考证了激励小尺度模式在自由剪切流模拟中的可行性,描述了湍流强度、雷诺应力和湍流耗散量的变化,同时与标准的Smagorinsky涡黏性模式的计算结果进行了比较。数值结果显示,激励小尺度模式能够更为合理地描述湍流的耗散特性和能量传输特性,从而较为准确地展示出空间发展射流中由于流动不稳定而出现的旋涡产生、发展、破碎及合并等过程。  相似文献   

7.
利用有限体积法实现了基于非正交同位网格的SIMPLE算法。基于熵分析方法,采用涡粘性模型求解湍流熵产方程,系统研究了湍流模型对二维翼型绕流流场熵产率的影响。通过计算NACA0012翼型在来流雷诺数为2.88×106时,0°攻角~16.5°攻角范围内的翼型表面压力系数分布和升阻力特性,验证了算法及程序的正确性。结果表明,选择不同湍流模型时,翼型流场熵产的计算结果存在差异,湍流耗散是引起流场熵产的主要原因;翼型流场的熵产主要发生在翼型前缘区、壁面边界层和翼型尾流区域,流场熵产率与翼型阻力系数线性相关;当产生分离涡时,粘性耗散引起的熵产下降。  相似文献   

8.
本文是在文[19]、[20]的基础上用离散涡模型与边界层理论相结合的方法研究高雷诺数圆柱非定常初期流动。计算了这一过程中的流动结构与旋涡运动过程。特别是关于二次涡、二次涡对的发生发展和影响。本文结果清楚地描述了在对称主涡变为不对称运动以前,柱后旋涡运动和流动结构所经历的复杂变化过程。结果与一些比较稳定的高雷诺数实验场显示结果相符。流动图象也十分相似。本文还给出了这一过程中分离点、物面流动特征及阻力系数随时间变化的耦合计算结果。边界层分离点、物面最小压力点及阻力系数的计算结果与一些数值解及实验结果是符合的。  相似文献   

9.
用数值模拟方法对固定圆柱湍流涡脱落频率与弹性圆柱湍流涡致振动频率特性进行了研究,湍流计算模型采用标准κ-ε模型,压力泊松方程提法基于非交错网格系统.研究结果表明:固定圆柱湍流绕流涡脱落频率基本不随雷诺数而变,对于同一固有频率弹性圆柱,涡振频率基本不随雷诺数而变;对于某一固定雷诺数流动涡振频率在一定范围内与系统固有频率有关.  相似文献   

10.
利用有限体积法实现了基于非正交同位网格的SIMPLE算法。基于熵分析方法,采用涡粘性模型求解湍流熵产方程,系统研究了湍流模型对二维翼型绕流流场熵产率的影响。通过计算NACA0012翼型在来流雷诺数为2.88×106时,0°攻角~16.5°攻角范围内的翼型表面压力系数分布和升阻力特性,验证了算法及程序的正确性。结果表明,选择不同湍流模型时,翼型流场熵产的计算结果存在差异,湍流耗散是引起流场熵产的主要原因;翼型流场的熵产主要发生在翼型前缘区、壁面边界层和翼型尾流区域,流场熵产率与翼型阻力系数线性相关;当产生分离涡时,粘性耗散引起的熵产下降。  相似文献   

11.
Some types of mixed subgrid-scale (SGS) models combining an isotropic eddy-viscosity model and a scale-similarity model can be used to effectively improve the accuracy of large eddy simulation (LES) in predicting wall turbulence. Abe (2013) has recently proposed a stabilized mixed model that maintains its computational stability through a unique procedure that prevents the energy transfer between the grid-scale (GS) and SGS components induced by the scale-similarity term. At the same time, since this model can successfully predict the anisotropy of the SGS stress, the predictive performance, particularly at coarse grid resolutions, is remarkably improved in comparison with other mixed models. However, since the stabilized anisotropy-resolving SGS model includes a transport equation of the SGS turbulence energy, kSGS, containing a production term proportional to the square root of kSGS, its applicability to flows with both laminar and turbulent regions is not so high. This is because such a production term causes kSGS to self-reproduce. Consequently, the laminar–turbulent transition region predicted by this model depends on the inflow or initial condition of kSGS. To resolve these issues, in the present study, the mixed-timescale (MTS) SGS model proposed by Inagaki et al. (2005) is introduced into the stabilized mixed model as the isotropic eddy-viscosity part and the production term in the kSGS transport equation. In the MTS model, the SGS turbulence energy, kes, estimated by filtering the instantaneous flow field is used. Since the kes approaches zero by itself in the laminar flow region, the self-reproduction property brought about by using the conventional kSGS transport equation model is eliminated in this modified model. Therefore, this modification is expected to enhance the applicability of the model to flows with both laminar and turbulent regions. The model performance is tested in plane channel flows with different Reynolds numbers and in a backward-facing step flow. The results demonstrate that the proposed model successfully predicts a parabolic velocity profile under laminar flow conditions and reduces the dependence on the grid resolution to the same degree as the unmodified model by Abe (2013) for turbulent flow conditions. Moreover, it is shown that the present model is effective at transitional Reynolds numbers. Furthermore, the present model successfully provides accurate results for the backward-facing step flow with various grid resolutions. Thus, the proposed model is considered to be a refined anisotropy-resolving SGS model applicable to laminar, transitional, and turbulent flows.  相似文献   

12.
A new numerical method for solving the axisymmetric unsteady incompressible Navier-Stokes equations using vorticity-velocity variables and a staggered grid is presented. The solution is advanced in time with an explicit two-stage Runge-Kutta method. At each stage a vector Poisson equation for velocity is solved. Some important aspects of staggering of the variable location, divergence-free correction to the velocity field by means of a suitably chosen scalar potential and numerical treatment of the vorticity boundary condition are examined. The axisymmetric spherical Couette flow between two concentric differentially rotating spheres is computed as an initial value problem. Comparison of the computational results using a staggered grid with those using a non-staggered grid shows that the staggered grid is superior to the non-staggered grid. The computed scenario of the transition from zero-vortex to two-vortex flow at moderate Reynolds number agrees with that simulated using a pseudospectral method, thus validating the temporal accuracy of our method.  相似文献   

13.
This investigation concerns numerical calculation of turbulent forced convective heat transfer and fluid flow in straight ducts using the RNG (Re-Normalized Group) turbulence method.

A computational method has been developed to predict the turbulent Reynolds stresses and turbulent heat fluxes in ducts with different turbulence models. The turbulent Reynolds stresses and other turbulent flow quantities are predicted with the RNG κ?ε model and the RNG non-linear κ-ε model of Speziale. The turbulent heat fluxes are modeled by the simple eddy diffusivity (SED) concept, GGDH and WET methods. Two wall functions are used, one for the velocity field and one for the temperature field. All the models arc implemented for an arbitrary three dimensional duct.

Fully developed condition is achieved by imposing cyclic boundary conditions in the main flow direction. The numerical approach is based on the finite volume technique with a non-staggered grid arrangement. The pressure-velocity coupling is handled by using the SIMPLEC-algorithm. The convective terms are treated by the QUICK, scheme while the diffusive terms are handled by the central-difference scheme. The hybrid scheme is used for solving the κ and ε equations.

The overall comparison between the models is presented in terms of friction factor and Nusselt number. The secondary flow generation is also of major concern.  相似文献   

14.
The unsteady turbulent flow around bodies at high Reynolds number is predicted by an anisotropic eddy-viscosity model in the context of the Organised Eddy Simulation (OES). A tensorial eddy-viscosity concept is developed to reinforce turbulent stress anisotropy, that is a crucial characteristic of non-equilibrium turbulence in the near-region. The theoretical aspects of the modelling are investigated by means of a phase-averaged PIV in the flow around a circular cylinder at Reynolds number 1.4×105. A pronounced stress–strain misalignment is quantified in the near-wake region of the detached flow, that is well captured by a tensorial eddy-viscosity concept. This is achieved by modelling the turbulence stress anisotropy tensor by its projection onto the principal matrices of the strain-rate tensor. Additional transport equations for the projection coefficients are derived from a second-order moment closure scheme. The modification of the turbulence length scale yielded by OES is used in the Detached Eddy Simulation hybrid approach. The detached turbulent flows around a NACA0012 airfoil (2-D) and a circular cylinder (3-D) are studied at Reynolds numbers 105 and 1.4×105, respectively. The results compared to experimental ones emphasise the predictive capabilities of the OES approach concerning the flow physics capture for turbulent unsteady flows around bodies at high Reynolds numbers.  相似文献   

15.
This article presents a numerical investigation of turbulent flow in an axisymmetric separated and reattached flow over a longitudinal blunt circular cylinder. The governing equations were discretized by the finite-volume method and SIMPLER method was applied to solve the equations on a staggered grid. The turbulent flow was numerically simulated using the standard k–ε, Abe–Kondoh–Nagano (AKN) and Shear Stress Transport (SST) turbulence models. The comparisons made between numerical results and experimental measurements showed that the SST model is superior to other models in the present calculation.Computations were performed for three different Reynolds numbers of 6000, 10 000 and 20 000 based on the cylinder diameter. To our knowledge, this study represents the first numerical investigation of the present flow configuration. The computational results were validated with the available experimental data of reattachment length, mean velocity distribution and wall static pressure coefficient in the turbulent blunt circular cylinder flows. Further, other characteristics of the flow, such as turbulent kinetic energy, pressure, streamlines, and the velocity vectors are discussed.The results show that the main characteristics of the turbulence flow in the separation region, such as reattachment length or velocity profiles, are nearly independent of the Reynolds number. The obtained results showed that a secondary separation bubble may appear in the main separation bubble near the leading edge. Furthermore, it was found that the turbulent kinetic energy has a large effect on the formation of the secondary bubble.  相似文献   

16.
An efficient ghost-cell immersed boundary (IB) method is proposed for large eddy simulations of three-dimensional incompressible flow in complex geometries. In the framework of finite volume method, the Navier–Stokes equations are integrated using an explicit time advancement scheme on a collocated mesh. Since the IB method is known to generate an unphysical velocity field inside the IB that violates the mass conservation of the cells near the IB, a new IB treatment is devised to eliminate the unphysical velocity generated near the IB and to improve the pressure distribution on the body surface. To validate the proposed method, both laminar and turbulent flow cases are presented. In particular, large eddy simulations were performed to simulate the turbulent flows over a circular cylinder and a sphere at subcritical Reynolds numbers. The computed results show good agreements with the published numerical and experimental data.  相似文献   

17.
提出了湍流边界层的一种简单、快速计算方法, 用以求解强吸气作用下旋转圆筒表面边界层流动. 首先, 理论分析了同心圆筒间的旋转流体运动, 外筒静止、内筒旋转且为多孔吸气条件. 强吸气情况下旋转流动主要表现为内筒壁面附近的边界层流动, 基于这一事实得到了周向速度分布的解析表达式. 其次, 通过引入新参数扩展Cebeci-Smith代数湍流模型, 使其能考虑流线曲率、壁面吸气、低Reynolds数效应等因素. 针对这些因素的综合影响, 采用解析修正和经验参数对模型进行调整. 同时, 基于Reynolds应力湍流模型的仿真结果, 校准代数湍流模型中的经验参数. 最后, 给出基于广义Cebeci-Smith湍流模型的旋转壁面边界层流动的迭代算法, 该算法适用于需要特殊迭代过程的轴向及周向流动均匀情况. 计算了不同旋转速度和吸气强度组合工况下的边界层流动, 其周向速度和湍流强度分布与基于Reynolds应力湍流模型的计算结果非常接近. 并且表明, 当Reynolds应力湍流模型数值模拟预测内筒边界层为稳定层流时, 该方法也再现了相同初始条件下的层流边界层.  相似文献   

18.
提出了湍流边界层的一种简单、快速计算方法, 用以求解强吸气作用下旋转圆筒表面边界层流动. 首先, 理论分析了同心圆筒间的旋转流体运动, 外筒静止、内筒旋转且为多孔吸气条件. 强吸气情况下旋转流动主要表现为内筒壁面附近的边界层流动, 基于这一事实得到了周向速度分布的解析表达式. 其次, 通过引入新参数扩展Cebeci-Smith代数湍流模型, 使其能考虑流线曲率、壁面吸气、低Reynolds数效应等因素. 针对这些因素的综合影响, 采用解析修正和经验参数对模型进行调整. 同时, 基于Reynolds应力湍流模型的仿真结果, 校准代数湍流模型中的经验参数. 最后, 给出基于广义Cebeci-Smith湍流模型的旋转壁面边界层流动的迭代算法, 该算法适用于需要特殊迭代过程的轴向及周向流动均匀情况. 计算了不同旋转速度和吸气强度组合工况下的边界层流动, 其周向速度和湍流强度分布与基于Reynolds应力湍流模型的计算结果非常接近. 并且表明, 当Reynolds应力湍流模型数值模拟预测内筒边界层为稳定层流时, 该方法也再现了相同初始条件下的层流边界层.   相似文献   

19.
The turbulent flows around four cylinders in an in-line square configuration with different spacing ratios of 1.5, 2.5, 3.5 and 5.0 have been investigated experimentally at subcritical Reynolds numbers from 11,000 to 20,000. The mean and fluctuating velocity distributions were obtained using the laser Doppler anemometry (LDA) measurement. The digital particle image velocimetry (DPIV) was employed to characterize the full field vorticity and velocity distributions as well as other turbulent quantities. The experimental study indicated that several distinct flow patterns exist depending on the spacing ratio and subcritical Reynolds number for turbulent flow. The three-dimensional numerical simulations were also carried out using the large eddy simulation (LES) at Reynolds number of 15,000 with the spacing ratio of 1.5 and 3.5. The results show that the LES numerical predictions are in good agreement with the experimental measurements. Therefore, the three-dimensional vortex structures and the full field instantaneous and mean quantities of the flow field such as velocity field, vorticity field, etc., which are very difficult to obtain experimentally, can be extracted from the simulation results for the deepening of our understanding on the complex flow phenomena around four cylinders in in-line configuration.  相似文献   

20.
A dynamic global-coefficient mixed subgrid-scale eddy-viscosity model for large-eddy simulation of turbulent flows in complex geometries is developed. In the present model, the subgrid-scale stress is decomposed into the modified Leonard stress, cross stress, and subgrid-scale Reynolds stress. The modified Leonard stress is explicitly computed assuming a scale similarity, while the cross stress and the subgrid-scale Reynolds stress are modeled using the global-coefficient eddy-viscosity model. The model coefficient is determined by a dynamic procedure based on the global-equilibrium between the subgrid-scale dissipation and the viscous dissipation. The new model relieves some of the difficulties associated with an eddy-viscosity closure, such as the nonalignment of the principal axes of the subgrid-scale stress tensor and the strain rate tensor and the anisotropy of turbulent flow fields, while, like other dynamic global-coefficient models, it does not require averaging or clipping of the model coefficient for numerical stabilization. The combination of the global-coefficient eddy-viscosity model and a scale-similarity model is demonstrated to produce improved predictions in a number of turbulent flow simulations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号