首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 24 毫秒
1.
Abstract

Diphosph(III)azanes i-PrN[PhP(i-PrNH)](PhPR) (R = Me, Et, Ph, t-Bu) form diastemselectively in reactions of RNH2 with i-PrN[PhP(i-PrNH)](PhPCl). Reactions of 1,3,2-diazaphospholes C6H4(NH)2PR with RPCl2 and RP(Net2)2 (R = Me, Ph) yield i-PrN[PhP(i-RNH)][PhP(RNH)] and C6H4(NH)PRNP(R)X(X=Cl, NEt2), respectively, with modest stereoselection. New diazaphosph (III) azanes are characterized by spectral (31P, 1H, 13C NMR, IR, MS) data and single crystal x-ray analyses of i-PrN[PhP(i-PrNH)][PhP(EtNH)] and C6H4(NH)PEtS(N)P(NEt2)EtS are described.  相似文献   

2.
Transition Metal Complexes [Et2P(S)NR]M/n, Chelates containing 4-membered Rings and Phosphinothioic-organylamidato Ligands Phosphinothioic-organylamidato complexes [Et2P(S)NR]M/n (R = Me, Et, tBu, cHex, Ph; M = TiIII, VIII, CrIII, CoII, ZnII) are obtained by reaction of metal halides with [Et2P(S)NR]Li or from ZnEt2 and Et2P(S)NHR. In contrast to the analogous phosphinothioic complexes [R′2P(S)X]M/n (X = O, S, Se) they are extremely hydrolyzable. The ligand field parameters Δ and β of Et2P(S)NR? are found to be similar to those of R′2P(S)S? indicating a low ligand field strength and a strong nephelauxetic effect. In contrast to [R′2P(S)O]2M (M = Co, Zn), which are highly polymerised, there is only a weak tendency of the corresponding tetrahedral phosphinothioicorganylamidato complexes to form ligand bridges.  相似文献   

3.
Reactions of triorganotin chlorides with potassium salt of O-alkyl trithiophosphate [ROP(S)(SK)2; R = Me, Pri, Ph] in 2:1 molar ratio in anhydrous benzene yield triorganotin O-alkyl trithiophosphate of the type ROP(S) [SSnR′3]2 R = Me, Pri; Ph, R′ = Prn, Bun, Ph] which are found to be monomeric in nature. These complexes are soluble in common organic solvents. Similar reactions of diorganotin chloride with dipotassium salt of S-alkyl trithiophosphate yield diorganotin-S-alkyl trithiophosphate of the type [(RS)P(O)S2]2SnR′2; R = Me, Pri; R′ = Me, Et, Ph, which also are found to be monomeric in nature and are soluble in common organic solvents. The newly synthesized derivatives have been characterized by physicochemical and spectroscopic techniques, IR, NMR (1H, 31P, and 119Sn).  相似文献   

4.
The organometallic complexes of general formula [Me 2 Ga{(XPR 2 ) (YPR′ 2 )N}] (R, R′ = Ph, X, Y = O, (1); R, R′ = Ph, X, Y = S (2); R, R′ = Ph, X = O, Y = S (3); R = Me, R′ = Ph, X = O, Y = S (4)) were obtained by alkane eliminations from Me 3 Ga and the free acidic ligands, LH, in toluene solutions. Complexes 14 seem to be potential precursors to cationic gallium species.  相似文献   

5.
Abstract

The reactions of either PhPCl2 or PCl3 with (Me3Si)2NLi followed by H2C[dbnd]CHMgBr were used to prepare the new P-vinyl substituted [bis(trimethylsilyl)amino]phosphines, (Me3Si)2NP(R)CH[dbnd]CH2 [1: R=Ph, 2: CH[dbnd]CH2, 3: R=Me, and 4: R=N(SiMe3)2]. Oxidative bromination of phosphines 3–1 afforded the P-bromo-P-vinyl-N-(trimethylsilyl)phosphoranimines, Me3SiN[dbnd]P(CH[dbnd]CH2)(R)Br [5: R=Ph, 6: R=CH[dbnd]CH2, 7: R=Me], which, upon treatment with CF3CH2OH/Et3N, were subsequently converted to the P-trifluoroethoxy derivatives, Me3SiN[dbnd]P(CH[dbnd]CH2)(R)OCH2CF3 [8: R=Ph, 9: R=CH[dbnd]CH2, 10: R=Me]. Compounds 1–10, which are of interest as potential precursors to P-vinyl substituted poly(phosphazenes), were fully characterized by elemental analyses (except for the thermally unstable P-Br derivatives 5–7) and NMR spectroscopy (1H, 13C, and 31P) including complete analysis of the vinylic proton splitting patterns via HOM2DJ experiments.  相似文献   

6.
《Polyhedron》1999,18(5):729-733
Equimolar quantities of [Mo (CO) (η2-RC2R′)2Cp] [BF4] (R=R′=Me Ph R=Me R′=Ph) and L L′ or L″ {L L′ or L″= [WI2 (CO){PhP(CH2CH2PPh2)2-PP′} (η2-RC2R′)]} (L R=R′=Me L′ R=R′=Ph L″ R=Me R′=Ph) react in CH2Cl2 at room temperature to give the new bimetallic complexes[Mo (CO) (L L′ or L″–P) (η2-RC2R′)Cp] [BF4] (1–9) via displacement of the alkyne ligand on the molybdenum centre The complexes have been characterised by elemental analysis IR and 1 H NMR spectroscopy and in selected cases by 31 P NMR spectroscopy.  相似文献   

7.
Methyl- or phenylN-carboxamido-complexes of platinum(II) Pt(NHCOR')RL2 (L = PEt3, R = Me, R′ = Me, CH = CH2; L = PEt3, R = Ph, R′ = Me; L = PMe2Ph, R = Ph, R′ = Me, Ph; L = PMePh2, R = Ph, R′ =3, R = Ph, R′ = Me) have been prepared by the reaction of KOH with cationic nitrile complexes [PtR(NCR′)L2]BF4. Thermally unstable hydrido-N-carboxamido-complexes could be detected spectroscopically. IR and NMR (1H, 31P) spectra of some of the complexes indicate the existence of a solvent- and temperature-dependent equilibrium between syn-and anti-isomers arising from restricted rotation about the NC bond of the carboxamido-group. The anti-isomer is favoured by nonpolar solvents and by increasing bulk of L. In the complex [PtH(NCCH CH2)(PEt3)2]BF4, IR and NMR spectra show acrlonitrile to be bound through nitrogen, not through the olefinic CC bond.  相似文献   

8.
Upon heating solid monoalkylamino(silyl)carbene complexes (CO)5MC(NHR′)SiR3 (M = W: SiR3 = SiPh3, R′ = Me, Et, Bun, C6H11, Ph; SiR3 = SiMePh2, R′ = Me, Et. M = Mo, Cr: R = Ph, R′ = Me, Et) beyond their melting points, HSiR3 elimination with formation of the isonitrile complexes (CO)5MNCR′ and (CO)4M(CNR′)2 and (CO)6M takes place quantitatively. Deuteration experiments show that the silane hydrogen stems from the NH group and that the reaction partially or exclusively proceeds by an intermolecular pathway.  相似文献   

9.
Abstract

Starting from tBu2PCl, the title compounds tBu2P(S)NHR′ (R′= Me Et, iPr, tBu) may be easily prepared according to With R′=tBu the amine has to be substituted by its Li-salt [tBuNH]?Li+.  相似文献   

10.
Abstract

The reactions of a variety of electrophiles with the N-silyl-P-trifluoroethoxyphosphoranimine anion Me3Sin°P(Me)(OCH2CF3)CH? 2 (1a), prepared by the deprotonation of the dimethyl precursor Me3SiN[dbnd]P(OCH2CF3)Me2 (1) with n-BuLi in Et2O at-78°C, were studied. Thus, treatment of 1a with alkyl halides, ethyl chloroformate, or bromine afforded the new N-silylphosphoranimine derivatives Me3SiN[dbnd]P(Me)(OCH2CF3)CH2R [2: R = Me, 3: R = CH2Ph, 4: R = CH[sbnd]CH2, 5: R = C(O)OEt, and 6: R = Br]. In another series, when 1a was allowed to react with various carbonyl compounds, 1,2-addition of the anion to the carbonyl group was observed. Quenching with Me3SiCl gave the O-silylated products Me3SiN[dbnd]P(Me)(OCH2CF3)CH2°C(OSiMe3)R1R2 [7: R 1 = R 2 = Me; 8: R 1 = Me, R 2 = Ph; 9: R1 = Me, R 2 = CH[sbnd]CH2; and 10: R 1 = H, R 2 = Ph]. Compounds 2–10 were obtained as distillable, thermally stable liquids and were characterized by NMR spectroscopy (1H, 13C, and 31P) and elemental analysis.  相似文献   

11.
Abstract

The 31P nmr spectra of 2,4- and 2,6-diamino-derivatives of octachlorocyclotetraphosphazatetraene, N4P4Cl6(NR1R2)2 (R1 = H, R2 = But; R1 = H, R2 = CH2Ph; R1 = Me, R2 = Ph), have been measured. The 2,4- and 2,6-isomers were analysed as AA'BB' and A2B2 spin systems respectively. In the 2,4-isomers the spin-spin couplings 2J(PNP) and 4J(PNPNP) were of opposite sign.  相似文献   

12.
Abstract

Aminophosphine des Typs Rn P(NR′2)3-n (n= 2, 1, 0; R = Ph, c-Hex, (-)Men, t-Bu; R′= Me, Et, n-Bu) reagieren mit 2, 4-Bis(aryl)-1, 3, 2, 4-dithiadiphosphetan-2, 4-disulfiden (ArPS2)2(Ar: Ph, 4-Methoxyphenyl = An, Naphthyl, Thienyl) unter formaler Insertion monomerer {ArPS2)-Einheiten in eine oder in zwei der λ3-P—N-Bindung zu chiralen Organophosphorverbindungen Ar(R′2N)P(S)—S—PRn (NR′2)2-n(n = 2, 1, 0) und [Ar(R′2N)P(S)—]2PR2(NR′2)1-n (n = 1.0). In diesen werden bei Raumtemperatur bevorzugt die λ3—P—N—und λ3—P—S-Bindungen durch H2O oder Methanol unter Bildung von Produktgemischen solvolysiert. Mit Chlorwasserstoff bildet sich aus An(Et2N)P(S)—S—PPh(NEt2) das An(Et2 N)P(S)—S—PPh(C1). Addition von Schwefel führt zu Ar(R′2N)P(S)—S—P(S)Rn (NR′)2-n (n=2, 1). Die Stereoisomerenbildung der neuen Verbindungen wird besprochen und ihre Struktur sowie die Zusammensetzung der Reaktionsmischungen aus den 31P-Spektren hergeleitet.

Aminophosphines Rn P(NR′2)3-n (n = 2, 1, 0; R = Ph. c-Hex, (-)Men, t-Bu; R′= Me, Et, n-Bu) react with 2, 4-Bis(aryl)-1, 3, 2, 4-dithiadiphosphetane-2, 4-disulfides (ArPS2)2 (Ar: Ph, 4-Methoxyphenyl = An, Naphthyl, Thienyl) under formal insertion of monomeric {ArPS2)-units in one or in two of the λ3-P—N-bonds to yield chiral organophosphorus compounds Ar(R′2N)P(S)—S—]2PRn (NR′2)2 (n = 2, 1, 0) and [Ar(R′2N)P(S)—S—]2 PR2 (NR′2)2-n (n = 1, 0). At room temperature chiefly the A—P—N and A3—P—S-bonds in these products are solvolyzed by H, O or methanol with formation of mixtures of compounds. With hydrogen chloride An(Et2N)P(S)—S—PPh(NEt2) is converted into An(Et2N)P(S)—S—PPh(Cl). Addition of sulfur yields Ar(R′2N)P(S)—S P(S)Rn (NR′2)2-n (n = 2, 1). Stereoisomerism of the new compounds is discussed and their structures as well as the composition of reaction mixtures are deduced from “P-NMR-spectra”.  相似文献   

13.
Two series of diorganotin(IV) dialkyldithiophosphates, [RR′Sn{SSP(OR″)2}2](R = Me or Et; R′= Ph; R″ = Et, Prn, Pri or Bun) and [RR′Sn(Cl){SSP(OR″)2}] (R = R′= Me, Et or Ph; R″ = Ph; R″ = Et, Pri or Bun) were prepared and characterised by i.r. and NMR (1H, 13C, 31P, 199Sn) spectroscopy. The NMR data indicate five and six coordinate geometries for [RR′Sn(Cl){SSP(OR″)2}] and [RR′Sn{SSP(OR″)2}2] complexes, respectively. The chloro complexes showed 2J (PSn) whereas such couplings were not observed in the spectra of [RR′Sn{SSP(OR″)2}2].  相似文献   

14.
[WBr2(CO4]n reacts with alkynes to give complexes [WBr2CO(RCCR)2]2 (1) (R = R′ = Me, Et, Ph; R = Me, R′ = Ph), which react with nucleophiles L{L = CNBut, PPh3, or P(OMe)3} to give monoalkyne derivatives (WBr2(CO)(RCCR′)L2](2). An intermediate bis-alkyne adduct [WBr2CO(MeCCMe)2(CNBut)] (3) was isolated in the reaction of [WBr2CO(MeCCMe)2]2 with CNBut illustrating that cleavage of the dimer (1) is the first stage in these reactions.  相似文献   

15.
《Polyhedron》1999,18(20):2665-2671
The reaction of [PtCl2(dppe)] [dppe=1,2-bis(diphenylphosphino)ethane] with two equivalents of the thioureas NHRC(S)NHR (R=H, Me, Et) in the presence of NH4PF6 led to substitution of both chlorides and formation of the complexes [Pt(dppe){SC(NHR)2}2](PF6)2 (1a, R=H; 1b, R=Me; 1c, R=Et). In contrast, the reaction of [PtCl2(dppe)] with one equivalent of the potentially bidentate thiosemicarbazides NHRC(S)NHNR′2 (R=Me, R′=H; R=Et, R′=H; R=Ph, R′=H; R=Me, R′=Me) in the presence of NH4PF6 led to substitution of only one chloride and formation of the complexes [PtCl(dppe){SC(NHR)NHNR2′-S}](PF6) (2a, R=Me, R′=H; 2b, R=Et, R′=H; 2c, R=Ph, R′=H; 2d, R=Me, R′=Me). An X-ray analysis of complex 2d revealed that an intramolecular N–H⋯Cl hydrogen bond [N(2)⋯Cl(1)=3.29(2) Å] helps to stabilise the monodentate co-ordination mode. The chloride ligand can be abstracted from complex 2d by treatment with TlPF6, and this reaction led to formation of [Pt(dppe){SC(NHMe)NHNMe2-S,N}](PF6)2 3d. Reaction of [PtCl2(dppe)] with unsubstituted thiosemicarbazide NH2C(S)NHNH2 in the presence of NH4PF6 resulted in a mixture of products containing mono- and bidentate co-ordinated ligands, [PtCl(dppe){SC(NH2)NHNH2-S}](PF6) 2e and [Pt(dppe){SC(NH2)NHNH2-S,N}](PF6)2 3e. [PtCl2(dppe)] also reacts with two equivalents of NHMeC(S)NHNMe2 in the presence of NH4PF6 to yield [Pt(dppe){SC(NHMe)NHNMe2-S}2](PF6)2 1d, in which the thiosemicarbazide is acting as an S-donor, directly analogous to the thiourea ligands in complexes 1a–c.  相似文献   

16.
The reaction of [Ru(OH2)2(RaaiR′)2]2+ [RaaiR′ = 1-alkyl-2-(arylazo)imidazole, p-R–C6H4–N=N–C3H2–NN(1)–R′, R=H (1), Me (2), Cl (3); R′ = Me (a), Et (b), CH2Ph (c)] with 8-quinolinol (HQ) in acetone solution followed by the addition of NH4PF6 afforded violet, mixed ligand complexes of composition [Ru(Q)(RaaiR′)2](PF6). The structure of [Ru(Q)(MeaaiMe)2](PF6) (2a) has been confirmed by X-ray diffraction studies. Solution electronic spectra exhibit a strong MLCT band at 560–580?nm in MeCN. Cyclic voltammogrames show a Ru(III)/Ru(II) couple at 1.0–1.1?V versus SCE along with three successive ligand reductions. The electronic properties are correlated with EHMO results.  相似文献   

17.
《合成通讯》2013,43(9):1465-1474
ABSTRACT

2,4,6-Trinitrotoluene (TNT) and its sulfonyl analogue 2-isobutylsulphonyl-4,6-dinitrotoluene undergo smooth condensation with chloral and fluoral to give 2-R-4,6-dinitrophenyl-1-(trihalomethyl)ethanols which easily cyclize to give 4-R-6-nitro-2-trihalomethyl-2,3-dihydrobenzo[b]furans (R=NO2, i-Bu; halogen = F or Cl) in the presence of K2CO3. 2-R′-sulphonyl-4,6-dinitrotoluenes, prepared from TNT, condense with aromatic aldehydes to form 1-(2-R′-sulphonyl-4,6-dinitro)-2-arylethenes in which the ortho-nitro group, upon interaction with NaN3 was selectively substituted by the azido group. Thermolysis of the obtained azides gave 2-aryl-4-R′-sulphonyl-6-nitroindoles (R′ = Ph, i-Bu, PhCH2). Such N-methylated indole (R′ = i-Bu) was regioselectively aminated.  相似文献   

18.
Supermesityl stabilized Iminoboranes. III New Iminoboranes R? B?N? R′ (R = 2,4,6(t-Bu)3C6H2), IIa – IIf , were obtained by base-induced HF-elimination from RBF? NHR′ ( Ia-Ie ) or directly from RBF2 and lithiated H2NR′ (for IIf ). Compounds II exhibit a differentiated behaviour upon thermal treatment depending on R′. While IIa (R′ = H) immediately reacts to give the corresponding benzo[1]borolane IIIa , the dimeric diazadiboretidine is formed from IIb (R′ = Me) at 100°C; IIc (R = Et) and IId (R = C6H5) deliver the benzo[1]borolanes IIIc and IIId when they are heated to 180°C (in melt). IIe (R = 2,6(i-Pr)C6H3) and IIf (R = adamantyl) are stable at 250°C. All compounds were characterized by elemental analyses and spectroscopically (MS, IR, NMR: 1H, 13C, 11B, 19F and in part 15N).  相似文献   

19.
Treatment of a solution of [Os3(CO)10(R2C2)] (R = Me (1, R = Ph (2)) in CH2Cl2 with Me3No/MeCN in the presence of R′2C2 affords the new organometallic cluster [Os3(CO)8(R2C2)(R′2C2)] (R = R′ = Me (3), R = R′ = Ph (4) and R = Ph, R′ = Me (5)). A single crystal X-ray analysis of compound 4 has established a triangular metal framework with both the alkyne units coordinated in a μ32-6-mode. In toluene, at 80°C, compound 4 undergoes rearrangement to the known compound, [Os3H(CO)8(Ph)C2(C6H4))] (6) in which CC bond formation has occurred to produce an osmacyclopentadiene ring.  相似文献   

20.
The reaction of cis-[PdCl2(CNR)2] (R = Ph, p-MeC6H4, p-MeOC6H4) and trans-[PdI2(CNPh)2] with HgR′2 (R′ = Me, Ph) followed by addition of PPh3 (Pd/PPh3, 12) gives complexes of the type trans- [PdX {C(=NR)C(R′)=NR}(PPh3)2] (X = Cl, I) I as main products. These bis(imino) compounds may result from double insertion of the coordinated isocyanides into a PdR′ σ-bond. NaBPh4 was also found to act like HgPh2 as a good phenylating agent towards coordinated isocyanide. The reactions of I with methanolic HClO4 yield cationic compounds: trans- [PdX{C(NHR)C(R′)=NR}(PPh3)2]ClO4; the protonated bis(imino) group may also be formulated as {C(=NR)C(R′)NHR} and a fast equilibrium between the two forms probably exists in solution. The factors influencing the reaction with HgR′2 and spectroscopic data (IR and 1H NMR) for the complexes are reported and discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号