首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Abstract

Recently we have reported that the reaction of sodium methoxide with ate-complexes (1) readily prepared from trimethyl-silylpropargyl phenyl ether and organoboranes gives trimethyl-silylallenes (2) selectively (eq. 1).1 In an attempt to find a new synthetic application of such silylallenes (2), the oxidation of 2 was examined. Although the usual oxidants such as m-chloro-perbenzoic acid were found to be unsuitable for the oxidation of the silylallenes, it was discovered that 2 was autoxidized at room temperature to propargylic hydroperoxide (3) (eq. 2). For example, the acidified starch-iodine test2 strongly suggested the presence of the organic hydroperoxide in the reaction mixture obtained from 1,2-heptadienyltrimethylsilane (2, R=Bu) and oxygen. The hydroperoxide (3, R=Bu) was isolated in a 40% yield by distillation, 45–48 [ddot]C/0.1 mmHg. In the infrared spectrum, the OH stretching frequency appears at 3430 cm?1 and the C°C at 2180 cm,?1  相似文献   

2.
Abstract

Fully protected 1-thioglycopyranosyl esters of N-acylamino acids (5, 6, and 7) were prepared by condensation of methyl 2, 3, 4-tri-O-acetyl-1-thio-β-d–glucopyranuronate (1), 2, 3, 4-tri-O-acetyl-1-thio-l–arabinopyranose (2), and 2, 3, 4-tri-O-acetyl-1-thio-D-arabinopyranose (3) with pentachlorophenyl esters of N-acylamino acids in the presence of imidazole. The 13C NMR chemical shifts of the starting 1-thio sugars and the 1-thiol ester products are reported.  相似文献   

3.
Abstract

The title compound was synthesized in four steps from D-glucono-1,5-lactone. Reduction of 2,4,6-tri-O-benzoyl-3-deoxy-D-arabino-hexono-1,5-lactone (1) with disiamylborane afforded 2,5,6-tri-O-benzoyl-3-deoxy-D-arabino-hexopyranoae (2) which, on debenzoylation, gave 3-deoxy-D-arabino-hexoae (3). Tautomeric equilibrium of 3 was studied by 1H and 13C NMR spectroscopy.  相似文献   

4.
Abstract

A new resolving reagent, (S)-(?)-2-methyl-2-phenylsuccinic anhydride (5) for the resolution of amines via covalent bond formation and its application to the resolution of aminodioxane (±)-(1) is described. The d.e. of the amides (7) and (8) has been determined by studying 1H-NMR spectra.  相似文献   

5.
Abstract

Selective glycosylation of benzyl 4,6-O-benzylidene-β-D-galacto-pyranoside (1) with 1.5 mole equivalent of 2,3,4,6-tetra-O-binzyl-α-D-galactopyranosyl bromide (2) catalyzed by halide ion gave the (1→2)-α-(5) and (l→3)-α-D-linked disaccharide (7) derivatives in 22 and 40% yields, respectively. The D-galactose unit at the reducing end of 2-O-α-D-galactopyranosyl-D-galactose [11) at equilibrium in D2O was shown By 13C NMR spectroscopy to exist in the pyranose and furanose forms in the ratio of ~2:1.  相似文献   

6.
Abstract

Aldol reaction of 1,2-O-isopropylidene-5-O-tertbutyl-dimethylsilyl-α-D-erythro-pentofuranos-3-ulose (1) with acetone in the presence of aqueous K2CO3 afforded 3-C-acetonyl-1,2-O-isopropylidene-5-O-tertbutyl-dimethylsilyl-α-D-ribofuranose(2). Similar reaction of 1,2:5, 6-di-o-isopropylidene- α-D-ribo-hexofuranos-3-ulose (3) afforded 3-C-acetonyl-1,2:5, 6-di-o-isopropylidene- α-D-allofuranose (4) and (1R, 3R, 7R, 8S, 10R)-perhydro-8-hydroxy-5,5,10-trimethyl-2,4,6,11,14-pentaoxatetracyclo[8,3,1,01,8,03,7] tetradecane. The stereochemistry of the new chiral centers were determined by 1H NOE experiments.  相似文献   

7.
Trichodiene (1), a sesquiterpene hydrocarbon, was isolated from the extract of mycelium of Trichothecium roseum. The structure of trichodiene (1) was elucidated by Nozoe and Machida in 1970 via degradation and spectroscopy.1 Trichodiene (1) has been shown to be the biogenetic precursor of the trichothecane family of sesquiterpenoids as characterized by the cytotoxic fungal metabolite (-)-trichodermin (2).2,3 The structure and absolute stereochemistry of (-)-trichodermin (2) were determined by X-ray diffraction and, therefore, the structure and absolute stereochemistry of trichodiene (1) are now firmly established.4 We wish to report a total synthesis of (±)-trichodiene (1) via previously reported lactone 3.5,6  相似文献   

8.
Abstract

The reaction of N-phenyliminoketenylidenetriphenylphosphorane [a] (1), with 2-benzylidene-1, 3-indandione (2), 1,2-diphenyl-3,4-pyrazolidenedione (3)and/or 5-benzylidene barbituric acid (4) has been investigated. When ylide 1 was allowed to react with compounds 2, 3 or 4 in THF at ambient temp. the corresponding new pyrano-phosphoranylidenes 5, 6 or 7 were obtained. The elemental microanalyses, IR, 1H NMR, 31P NMR and MS data agree with the structure of the cyclic iminophosphoranes by [4+2]-cycloaddition and exclude 4-membered ring structure by [2+2]-cycloaddition. When the Wittig reaction was carried on the pyrano-phosphoranes 5, 6 or 7 using p-nitrobenzaldehyde, the exocyclic olefins together with triphenylphosphine oxide were isolated.  相似文献   

9.
Abstract

Alkyl bisaminophosphorodiamidites1 (1) has been shown to be versatile reagents for in situ preparation of d-nucleoside-3-phosphoramidites2,3,4 (2.)  相似文献   

10.
Abstract

The erythro and threo chiral C5 methyl ketones (4) and (5), prepared from the (2S, 3R)-methyl diel (1b), were converted into the phenylsulfenimines (6) and (7), which, in turn, on reaction with allyl-magnesiutn bromide, yielded after acid hydrolysis and benzoylation, the diastereoisomeric C8-N-aminodiol derivatives (9) and (11), with threo stereochemistry relative to positions 4 and 5. Ozonolysis of (9) and (11) yielded the l-arabino and l-xylo 3-O-methyl branched aminodeoxysugar derivatives (13) and (15), respectively. Using diallylzinc as the reagent, the diastereoisomeric erythro products (8) and (10) were obtained. The latter materials gave the l-ribo-and l-lyxo-(lL-vancosamine) derivatives (12) and (14) upon oxonolysis. The 1H and 13C NMR spectra of the four isomeric aminodeoxysugar derivatives (12)—(15) were discussed.  相似文献   

11.
Abstract

Glycosylation of methyl 3-O-(2-acetamido-3, 6-di-O-benzyl-2-deoxy-β-D-glucopyranosyl)-2,4,6-tri-O-benzyl-β-D-galactopyranoside (2) with 2,3,4,6-tetra-O-acetyl-α-D-galactopyranosyl bromide (1), catalyzed by mercuric cyanide, afforded a trisaccharide derivative, which was not separated, but directly O-deacetylated to give methyl 3-O-(2-acetamido-3,6-di-O-benzyl-2-deoxy-4-O-β-D-galactopyranosyl-β-D-giucopyranosyl)-2,4,6-tri-O-benzyl-β-D-galactopyranoside (8). Hydrogenolysls of the benzyl groups of 8 then furnished the title trisaccharide (9). A similar pflyccsylation of methyl 3-O-(2-acetamido-3-O-acetyl-2-deoxy-β-D-glucopyranosyl)-2,4,6-tri-O-benzyl- β-D-galactopyranoside (obtained by acetylation of 4, followed by hydrolysis of the benzylidene acetal group) with bromide 1 gave a tribenzyl trisaccharide, which, on catalytic hydrogenolysls, furnished the isomeric trisaccharide (12). Methylation of 4 and 2 with methyl iodide-silver oxide in 1:1 dichloro-methane-N, N-dimethylformamide gave the 3-O- and 4-O-monomethyl ethers (13) and (15), respectively. Hydrogenolysis of the benzyl groups of 13 and 15 then provided the title monomethylated disaechartdes (15) and (16), respectively. The structures of trisacchacides 9 and 12, and disaccharides 14 and 16 were all established by 13C MMR spectroscopy.  相似文献   

12.
Abstract

λ3-Phosphaalkynes 1 dimerize in the presence of cyclopentadienylcobaltbis (ethylene) (2) to yield λ3-1,3-diphosphacyclobutadienes, which are stabilized by complex formation (3). An excess of 2, finally, is responsible for the formation of the complex 4.  相似文献   

13.
Abstract

1-O-Methyl analogs of mucin oligosaccharide components, D-GalNAc (1a and 1b). β-D-Galp-(1-3)-D-GalNAc (2) and β-D-Galp(1-3)-[β-D-GlcNAc-(1-6)]-D-GalNAc (3) in which the H-6proS proton was selectively replaced by a deuterium, were synthesized to study the solution conformations about the C5-C6 fragments by 1H-NMR spectroscopy. The study revealed the preference of the gt-conformer for these sugars.  相似文献   

14.
Abstract

Evidence has been presented that Bu t group in l-phenylethyl t-butyl sulphide, sulphoxides, sulphone, carbinols (1) as well as in benzyl t-butyl sulphoxide (2) prefers to orient itself anti to Me and gauche to Ph group.  相似文献   

15.
Abstract

The syntheses of phospholes (7, [3+2]-cycloaddition), bicyclophosphaalkenes (17, [4+2]-cycloaddition), and phosphabenzenes (15, [4+2]-cycloaddition followed by an extrusion process) starting from the phosphaalkynes (4) are described. The 2–Dewar phosphabenzene 18, obtained from the cyclobutadiene 21 and 4 (R =tBu), is the starting material for the synthesis of the valency isomers 19, 20, 22, and 23.  相似文献   

16.
A mixture of 1-methyl- and 2-methyl-1,4,4a,8a,-tetrahydro-endo-1,4-methano-naphthalene-5,8-diones ( 2 & 3 ) was chemically transformed into separable methyl substituted tricyclo[5.2.1.02,6]decadienones 7 , 8 & 9 . The structure of 8 & 9 were elucidated via Cope rearrangement of their corresponding allylic alcohols ( 10 & 11 ) to furnish 12 & 13 respectively.  相似文献   

17.
As a part of our studies in the conversion of triterpenoids into steroids we have reported1 that the Jones oxidation of some triterpenoid hemiacetals (1) gives acyloxy acids (2) instead of the desired 1,5-diketones (3). We now report2 the shortest route yet for the reconstruction of a triterpenoid ring A ketone (4) into a steroidal enone (7) involving as key steps the exhaustive Baeyer-Villiger oxidation3 of triterpenoid ketones (4) into δ-lactones (5) and mild chromium(VI) oxidation of cyclic hemiacetals (1) into diketones (3).  相似文献   

18.
Abstract

In this communication we wish to report an interesting case of the isolation and characterization of the cis and trans isomers of 1-(p-bromobenzylidene)-2-indanone and their ketals. Prior to this work, Hoogstreen and Trenner2 had reported on the cis and trans isomers of 1-(p-chlorobenzylidene)-2-methyl-5-methoxyindenylacetic acid. The condensation of 2-(N-morpholinyl)-indene (1, prepared by the reaction of 2-indanone3 and morpholine) with P-bromobenzaldehyde was conducted by refluxing them in the presence of acetic acid for 4 hours. Acid hydrolysis of the reaction mixture followed by dry column chrcmatography over sillica gel using a fraction collector afforded two iscmeric monobenzylidenes, compounds 2(36.6%, mp 110–111°)and 3(1.3%, mp 115–116°) and a dibenylidene, compound 4 (8.7%, mp 205°). The relative rations of the mono- and dibenzylidenes seemed to depend on the reaction conditions. Higher yields of the monobenzylidenes 2 and 3 were obtained by conducting the reaction in the presence of UV light. The structures of these monobenzylidenes were established as cis and trans isomers of 1-(p-bromobenzylidenes)-2-indanone on the Basis of elemental analyses and ir and nmr spectroscopy. The ir spectra4 (CHCl3)

of compounds 2 [1725 (c=0), 1620 (c=c)cm?1] and 3[1710 (c=o), 1570, 1600 (c=c) cm?1] were consistent with the structures. The molecular ion peaks as well as the fragmentation patterns in the mass spectra of both these compounds were consistent with the assigned structures. Before going into the omr discussion it should be pointed out that treatment of compound 2 with athylene glycol in the presence of p-toluene sulfonic acid produced two ketals, 5 (38.3% mp, 118–120°) and 6 (30.6% mp, 125–126°). As depicted; the ketals 5and 6 were also found (by omr) to be related to each other as cis and trans isomers. Furthermore, each of them could be hydrolyzed with acid to the corresponding monobenzylidenes 2 and 3 without any isomerization. However, UV irradiation of compounds 2 and 3 gave equilibrium mixtures containing both the isomers, indicating isomerization had occurred under photolytic conditions.  相似文献   

19.
Abstract

In order to elucidate further the relationship between the composition of the fatty acyl groups in the nonreducing-sugar subunit of bacterial lipid A and its biological activity, 3-O-[(3R)-3-(acyloxy)tetradecanoyl]-2-deoxy-2-[(3R)-3-hydroxytetradecanamido]-4-O-phosphono-D-glucose [GLA-63(R, R) and GLA-64(R, R)], and 3-O-[(3R)-3-(acyloxy)tetradecanoyl]-2-deoxy-4-O-phosphono-2-tetradecanamido-D-glucose [GLA-67(R), GLA-68(R) and GLA-69(R)] have been synthesized. Benzyl 2-[(3R)-3-(benzyloxymethoxy)tetradecanamido]-2-deoxy-4,6-O-isopropylidene-β-D-glucopyranoside (5) and benzyl 2-deoxy-4,6-O-isopropylidene-2-tetradecanamido-β-D-glucopyranoside (6) were each esterified with (3R)-3-dodecanoyloxytetradecanoic acid (1), (3R)-3-tetradecanoyloxytetradecanoic acid (2) or (3R)-3-hexadecanoyloxy-tetradecanoic acid (3), to give 7-11, which were then transformed, by the sequence of deisopropylidenation, 6-O-tritylation and 4-O-phosphorylation, into a series of desired compounds.  相似文献   

20.
Abstract

A synthesis for L-streptose (1) is described. This synthesis differs from those previously reported in several ways, one of which is the use of photochemical reactions in two important steps. These reactions are part of a sequence leading from L-arabinose (2) to 5-deoxy-1,2-O-isopropylidene-β-L-threo-pentofuranos-3-ulose (3). Two other photochemical reactions are considered as a part of the conversion of 3 into L-streptose (1) but neither proved useful. L-Streptose (1) is synthesized from 3 by a sequence of reactions which involves formation of 5-deoxy-l,2-O-isopropylidene-3-C-nitromethyl-β-L-lyxo-furanose (10) and subsequent reaction of 10 with titanium(III) chloride.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号