首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Abstract

The reaction between 10,10′-bis(phenoxarsine) oxide (I) and HI gives 10-iodophenoxarsine. The latter, on treatment with H2Se give 10,10′-bis(phenoxarsine) selenide (II). The crystal structures of I and II have been determined from single crystal X-ray data. The unit cell for I is monoclinic, P21/c (No. 14) with a = 15.976(3) Å, b = 10.582(2) Å, c = 12.581(2) Å, β = 111.70(1)° V = 2018.6 Å3; d(calc.) = 1.65Mg/m3 at 23°C for four molecules per unit cell. From 3279 reflections for which I>0.5σ(I), F>σ(F), R = 0.041 with anisotropic thermal parameters for all non-hydrogen atoms and with fixed positions and thermal parameters for hydrogens. One of the phenoxarsina rings deviates from planarity by approximately 5° while the other deviates by more than 24°. The (As[sbnd]O) distances are 1.810(3) and 1.821(3) Å for the flat and bent ring and the (As[sbnd]O[sbnd]As) angle is 122.3(1)°. The bond distances to As and O from C are nearly the same for both rings, but the bond angles with As and the ring O as the apex are systematically larger for the flat ring. For II the unit cell is triclinic, P1 (No. 2) with a = 9.368(1) Å, b = 14.089 Å, c = 9.269(2) Å, α = 111.37(2), β = 113.11(2), γ = 74.76(1); V = 1037.5 Å3, d(calc) = 1.81 Mg/m3 for two molecules per unit cell at 23°C. From 2945 reflections for which I > 0.5σ(I), F > σ(F), R = 0.055 with anisotropic thermal parameters for all non-hydrogen atoms and with fixed positions and thermal parameters for hydrogen. One of the phenoxarsina rings deviates by 3° from planarity and the other by 8°. The (As[sbnd]Se) bond distances are 2.416(1) and 2.406(1) Å. The (As[sbnd]Se[sbnd]As) bond angle is 96.66(4)° and the corresponding (As[sbnd]C) and (C[sbnd]C) distances in the two rings are nearly the same. In comparison with I, the angles with As or O as the central atoms are about the same in both rings of II.  相似文献   

2.
A three-dimensional (3D) supramolecular compound, [(phen)LSnS]2·(H2O)2 (phen = 1,10-phenanthroline, L = mercaptoacetic acid), has been synthesized and the crystal structure was determined by a single crystal X-ray diffraction study. 1 is triclinic, space group P-1 with a = 6.695(1) Å, b = 10.929(2) Å, c = 12.117(2) Å, α = 114.55(3)°, β = 93.53(2)°, γ = 104.06(3)°, and Z = 1. The dinuclear cluster of [(phen)LSnS]2 and H2O are linked into a 3D supramolecular framework by a combination of O[sbnd]H…O, C[sbnd]H…O hydrogen bonds and π–π stacking interactions. Its luminescence property is discussed.  相似文献   

3.
Abstract

The title compound (1α, 3β, 5α)-(NSOPh)2NP(H)O-i-Pr crystallizes in the spacegroup P21/n with cell dimensions: a = 12. 150(2), b = 8.911(1), c = 17.614(3) Å, β = 107.52(1)o; Z = 4. The structure was solved by direct methods and refined by least-squares techniques to an R value of 0.048 for 2420 independent reflections (collected at room temperature) with I > 2.5 σ(I). The unit cell contains dimeric units which are formed by unprecedented P[sbnd]H…O[dbnd]S bridges. The conformation of the inorganic ring skeleton can be described as a boat; phosphorus and sulfur atoms show a distorted tetrahedral geometry. The S[sbnd]N bond lengths differ slightly, ranging from 1.547(3) to 1.588(2) Å. The exocyclic bond lengths are P[sbnd]H = 1.34(2), P[sbnd]O = 1.553(2), S[sbnd]O = 1.439(2) (mean value), and S[sbnd]C = 1.767(4) (mean value) Å. From a comparison with analogous structures the degree of asymmetry (ΔI = {[P[sbnd]N]-[S[sbnd]N]}Å) in the SNP unit is related to the difference in electronegativity between the sulfur and phosphorus centres.  相似文献   

4.
The title reaction gave three known compounds (2, 3 and 4) and two new compounds, CH3SCH2(CF2)2H (5) and I(CF2)2O(CF2)2SO3S+(CH3)3 (6). The structure of 6 was confirmed by X-ray diffraction analysis. The crystals of 6 belong to monoclinic space group P21/C with a = 9.399, b = 15.651, c=10.934Å, β = 94.80° and z = 4. The structure was solved by heavy-atom method and refined by block-diagonal matrix least-squares procedure to a final R of 0.054 for 1999 independent observed reflexions. The S C bonds around the sulphur atom in trimethylsulphonium are pyramidal with the bond lengths of 1.814 Å, 1.800Å and 1.818 Å and the bond angles C-S-C of 101.06°, 101.52° and 102.53°. The distances of the sulphur atom in trimethylsulphonium to three oxygen atoms in the sulphonate radical are 3.79 Å, 3.64 Å and 3.34 Å respectively. These distances are out of the range of the normal S-O bond length. The structure consists of trimethylsulphonium cations and 5-iodo-3-oxaoctafluoropentane-sulphonate anions.  相似文献   

5.
Pale rose single crystals of SrMn2(PO4)2 were obtained from a mixture of SrCl2 · 6 H2O, Mn(CH3COO)2, and (NH4)2HPO4 after thermal decomposition and finally melting at 1100 °C. The new crystal structure of strontium manganese orthophosphate [P‐1, Z = 4, a = 8.860(6) Å, b = 9.054(6) Å, c = 10.260(7) Å, α = 124.27(5)°, β = 90.23(5)°, γ = 90.26(6)°, 4220 independent reflections, R1 = 0.034, wR2 = 0.046] might be described as hexagonal close‐packing of phosphate groups. The octahedral, tetrahedral and trigonal‐bipyramidal voids within this [PO4] packing provide different positions for 8‐ and 10‐fold [SrOx] and distorted octahedral [MnO6] coordination according to a formulation Mn Mn Mn Sr (PO4)4. Single crystals of β′‐Mn3(PO4)2 (pale rose) were grown by chemical vapour transport (850 °C → 800 °C, P/I mixtures as transport agent). The unit cell of β′‐Mn3(PO4)2 [P21/c, Z = 12, a = 8.948(2) Å, b = 10.050(2) Å, c = 24.084(2) Å, β = 120.50°, 2953 independent reflections, R1 = 0.0314, wR2 = 0.095] contains 9 independent Mn2+. The reinvestigation of the crystal structure led to distinctly better agreement factors and significantly reduced standard deviations for the interatomic distances.  相似文献   

6.
Platinum complexes [Ph3PhCH2P]+[(Me2S=O)PtCl3]? I and cis-Cl2(Ph3Sb)(Me2S=O)Pt II were synthesized by reaction of triphenylbenzylphosphonium and tetraphenylstibonium chlorides with potassium tetrachloroplatinate in DMSO. Crystal I is formed by triphenylbenzylphosphonium tetrahedral cations [P-CPh 1.791(4)-1.795(4) Å, P-CAlk 1.811(4) Å; CPC 107.57(18)°-111.46(17)°] and by square anions [(Me2S=O)PtCl3]? [Pt-Cl 2.3236(11), 2.2981(12), 2.2977(11) Å; Pt-S 2.1950(10) Å; trans-angles SPtCl 177.51(4)°, ClPtCl 178.74(4)°]. In a square-planar complex II [trans-angles SPtCl 178.01(6)°, ClPtSb 177.96(4)°] with central platinum atom the chlorine atoms [Pt-Cl 2.308(1), 2.350(1) Å], triphenylstibine [Pt-Sb 2.5118(4) Å] and dimethyl sulfoxide [Pt-S 2.195(1) Å] molecules are coordinated. Compound II is a first example of mixed ligand complex of platinum(II), where in the coordination sphere of central atom the tertiary stibine is present along with DMSO ligand.  相似文献   

7.
The structure of the title compound (systematic name: 3,7‐di­bromo‐2‐hydroxy‐6‐iso­propyl­cyclo­hepta‐2,4,6‐trien‐1‐one), C10H10Br2O2, previously described by Ito, Fukazawa & Iitaka [Tetrahedron Lett. (1972), 13 , 745–749], has been redetermined. Strong inter‐ and intramolecular hydrogen bonds, with H...O distances of 2.17 (9) and 2.06 (6) Å, respectively, are observed. There are also two short Br...Br and two short Br...(ring centroid) interactions. Important dimensions include C—O(carbonyl) = 1.252 (5) Å, C—O(hydroxyl) = 1.355 (5) Å, C—Br(3‐position) = 1.904 (4) Å and C—Br(7‐­position) = 1.905 (4) Å, and an O—C—C—O ring torsion angle of −6.7 (6)°.  相似文献   

8.
(1.10-Phenanthroline)-tris(4-amidobenzoate)dysprosium, [Dy(p-ABA)3Phen · H2O] · 1.5H2O (where p-ABA = p-amidobenzoate and Phen = 1.10-phenanthroline) has been synthesized. The complex was characterized by elemental analysis, UV, IR spectroscopy, and molar conductance. The crystal structure was determined by X-ray crystallography. The coordination number of the mononuclear complex is nine. The crystals are triclinic, space group P1 with a = 10.4484(13) Å, b = 12.2015(15) Å, c = 14.0170(17) Å; α = 92.800(2)°, β = 102.7220(10)°, γ = 108.880(2)°. Z = 2, d c = 1.617 mg m?3, F(000) = 786. R1 = 0.0327, and wR2 = 0.0911.  相似文献   

9.
Further investigation of the reaction of Ar*GaCl2 (Ar* = 2,4,6-t-Bu3C6H2) with Na[Mn(CO)5] resulted in the new compound, [Ga(Ar*){Mn(CO)5}2] 2 . The new indium compounds, [In(Ar*){Co(CO)4}2] 3 and [In(Ar*){Mn(CO)5}2] 4 , have been prepared by the treatment of Ar*InBr2 with Na[Co(CO)4] and Na[Mn(CO)5], respectively. The structure of 3 was established by single-crystal X-ray diffraction: space group P1 (No. 2), Z = 2, a = 8.625(1) Å, b = 10.557(2) Å, c = 17.55(2) Å, α = 88.43(1)°, β = 83.45(1)°, γ = 71.14(1)°. The X-ray crystal structure of [Ga{Mn(CO)5}3] is also reported: space group Pbca (No. 61), Z = 8, a = 12.83(3) Å, b = 11.753(2) Å, c = 29.662(6) Å, α = β = γ = 90°.  相似文献   

10.
[Ph3PhCH2P]+[PdCl3(DMSO)]? · DMSO (I), [Ph4P]+[PdCl3(DMSO)]? (II), and [Ph4Sb(DMSO)]+[PdCl3(DMSO)]? (III) complexes have been synthesized via the reaction of palladium chloride with equimolar amounts of triphenylbenzylphosphonium chloride, tetraphenylphosphonium chloride, and tetraphenylstibonium chloride, respectively. According to X-ray diffraction data, the cations of complexes I (CPC = 104.90(8)°–111.61(9)°) and II (CPC = 105.12(10)°–111.46(10)°) have slightly distorted tetrahedral structures with P-C bond lengths of 1.786(2)–1.809(2) and 1.791(2)–1.799(2) Å, respectively. The antimony atom in the [Ph4Sb(DMSO)]+ cation has a trigonal bipyramidal surrounding with the dimethyl sulfoxide (DMSO) oxygen atom in an axial position (Sb...O 2.567(2) Å). The palladium atoms in the square mononuclear anions of complexes I, II, and III are tetracoordinate, and Pd-Cl distances are 2.3101(5)–2.3104(5) Å, 2.2950(7)–2.2038(7) Å, and 2.2986(9)–2.3073(9) Å, respectively. The DMSO ligands are coordinated to the palladium atom through the sulfur atom (Pd-S, 2.2318(5) (I), 2.2383(6) (II), and 2.2410(9) Å (III)).  相似文献   

11.
Molecules of the title compound, C12H9IN2O2S, are linked by one N—H⃛O hydrogen bond [H⃛O = 2.16 Å, N⃛O = 2.935 (4) Å and N—H⃛O 147°] and two C—H⃛O hydrogen bonds [H⃛O both 2.49 Å, C⃛O = 3.231 (5) and 3.220 (5) Å, and C—H⃛O = 135 and 134°] into sheets which themselves are weakly linked by an aromatic π–π‐stacking interaction between iodinated rings in centrosymmetrically related mole­cules. There are no iodo–nitro interactions.  相似文献   

12.
The crystal structure of [(C5H4BMe2)2Fe]‐4,4′‐bipyridine [ 2 · bipy]n has been determined by the method of simulated annealing from high resolution X‐ray powder diffraction at room temperature. The compound is of interest, because it proves that highly ordered organometallic macromolecules can be formed in the solid state via the self‐assembly of N–B‐donor‐acceptor bonds. [ 2 · bipy]n crystallizes in the triclinic space group, P 1, Z = 2, with unit cell parameters of a = 8.3366(2) Å, b = 11.4378(3) Å, c = 12.6740(5) Å, α = 112.065(2)°, β = 108.979(1)°, γ = 90.551(2)°, and V = 1047.06(6) Å3. For the structure solution of [ 2 · bipy]n 11 degrees of freedom (3 translational, 3 orientational, 5 torsion angles) were determined within several hours, demonstrating that the crystal packing and the molecular conformation of medium sized (< 50 non‐hydrogen atoms) coordination compounds can nowadays be solved routinely from high resolution powder diffraction data.  相似文献   

13.
Molecules of 2‐(2‐nitrophenylaminocarbonyl)benzoic acid, C14H10N2O5, are linked into centrosymmetric R(8) dimers by a single O—H⋯O hydrogen bond [H⋯O = 1.78 Å, O⋯O = 2.623 (2) Å and O—H⋯O = 178°] and these dimers are linked into sheets by a single aromatic π–π stacking interaction. The isomeric compound 2‐(4‐nitrophenylaminocarbonyl)benzoic acid crystallizes in two polymorphic forms. In the orthorhombic form (space group P212121 with Z′ = 1, crystallized from ethanol), the mol­ecules are linked into sheets of R(22) rings by a combination of one N—H⋯O hydrogen bond [H⋯O = 1.96 Å, N⋯O = 2.833 (3) Å and N—H⋯O = 171°] and one O—H⋯O hydrogen bond [H⋯O = 1.78 Å, O⋯O = 2.614 (3) Å and O—H⋯O = 173°]. In the monoclinic form (space group P21/n with Z′ = 2, crystallized from acetone), the mol­ecules are linked by a combination of two N—H⋯O hydrogen bonds [H⋯O = 2.09 and 2.16 Å, N⋯O = 2.873 (4) and 2.902 (3) Å, and N—H⋯O = 147 and 141°] and two O—H⋯O hydrogen bonds [H⋯O = 1.84 and 1.83 Å, O⋯O = 2.664 (3) and 2.666 (3) Å, and O—H⋯O = 166 and 174°] into sheets of some complexity. These sheets are linked into a three‐dimensional framework by a single C—H⋯O hydrogen bond [H⋯O = 2.45 Å, C⋯O = 3.355 (4) Å and C—­H⋯O = 160°].  相似文献   

14.
The title compound {systematic name: 2,2′‐[1,3‐propanediyldioxydi‐o‐phenylenebis(nitrilomethylidyne)]diphenol}, C29H26N2O4, exists as the phenol–imine form in the crystal, and there are strong intramolecular O—H⋯N hydrogen bonds, with O⋯N distances of 2.545 (2) and 2.579 (2) Å. The C=N imine bond distances are in the range 1.276 (2)–1.279 (2) Å and the C=N—C bond angles are in the range 123.05 (16)–124.64 (17)°. The configurations about the C=N bonds are anti (1E).  相似文献   

15.
A new zinc phosphite with the formula Zn3(tren)(HPO3)3·xH2O (x≈0.5) has been synthesized under hydrothermal conditions and characterized by FTIR, elemental analysis, powder X‐ray diffraction, single‐crystal X‐ray diffraction, thermogravimetric analysis and its fluorescent spectrum. The compound crystallizes in the triclinic system, space group (No.2), a = 10.1188(9) Å, b = 10.4194(9) Å, c = 10.5176(9) Å, α = 60.763(2)°, β = 70.6150(10)°, γ = 80.725(2)°, V = 912.77(14) Å3, Z = 2. The structure consists of double crankshaft chains, which are linked by Zn‐O‐P bonds to form 8‐ and 12‐membered channels along the [100] direction. The claw‐like Zn‐centered complexes of Zn(N4C6H18) as the supported templates, hang into the 12‐MR channels through Zn‐O‐P linkages with framework.  相似文献   

16.
Three ternary rare earth [NdIII ( 1 ), SmIII ( 2 ) and YIII ( 3 )] complexes based on 3‐[(4,6‐dimethyl‐2‐pyrimidinyl)thio]‐propanoic acid (HL) and 1,10‐phenanthroline (Phen) were synthesized and characterized by IR and UV/Vis spectroscopy, TGA, and single‐crystal X‐ray diffraction. The crystal structures showed that complexes 1 – 3 contain dinuclear rare earth units bridged by four propionate groups and are of general formula [REL3(Phen)]2 · nH2O (for 1 and 2 : n = 2; for 3 : n = 0). All rare earth ions are nine‐coordinate with distorted mono‐capped square antiprismatic coordination polyhedra. Complex 1 crystallizes in the monoclinic system, space group P21/c with a = 16.241(7) Å, b = 16.095(7) Å, c = 19.169(6) Å, β = 121.48(2)°. Complex 2 crystallizes in the monoclinic system, space group P21/c with a = 16.187(5) Å, b = 16.045(4) Å, c = 19.001(4) Å, β = 120.956(18)°. Complex 3 crystallizes in the triclinic system, space group P1 with a = 11.390(6) Å, b = 13.636(6) Å, c = 15.958(7) Å, α = 72.310(17)°, β = 77.548(15)°, γ = 78.288(16)°. The antioxidant activity test shows that all complexes own higher antioxidant activity than free ligands.  相似文献   

17.
Syntheses of the sky blue complex compounds [Ni(H2O)3(phen)(C5H6O4)] · H2O ( 1 ) and [Ni(H2O)2(phen)(C5H6O4)] ( 2 ) were carried out by the reactions of 1,10‐phenanthroline monohydrate, glutaric acid, NiSO4 · 6 H2O and Na2CO3 in CH3OH/H2O at pH = 6.9 and 7.5, respectively. The crystal structure of 1 (P 1 (no. 2), a = 14.289 Å, b = 15.182 Å, c = 15.913 Å, α = 67.108°, β = 87.27°, γ = 68.216°, V = 2934.2 Å3, Z = 2) consists of hydrogen bonded [Ni(H2O)3‐ (phen)(C5H6O4)]2 dimers and H2O molecules. The Ni atoms are octahedrally coordinated by two N atoms of one phen ligand, three water O atoms and one carboxyl O atom from one monodentate glutarato ligand (d(Ni–N) = 2.086, 2.090 Å; d(Ni–O) = 2.064–2.079 Å). Through the π‐π stacking interactions and intermolecular hydrogen bonds, the dimers are assembled to form 2 D layers parallel to (0 1 1). The crystal structure of 2 (P21/n (no. 14), a = 7.574 Å, b = 11.938 Å, c = 18.817 Å, β = 98.48°, V = 1682.8 Å3, Z = 4) contains [Ni(H2O)2(phen)(C5H6O4)2/2] supramolecular chains extending along [010]. The Ni atoms are octahedrally coordinated by two N atoms of one phen ligand, two water O atoms and two carboxyl O atoms from different bis‐monodentate glutarato ligands with d(Ni–N) = 2.082, 2.105 Å and d(Ni–O) = 2.059–2.087 Å. The supramolecular chains are assembled into a 3 D network by π‐π stacking interactions and interchain hydrogen bonds. A TG/DTA of 2 shows two endothermic effects at 132 °C and 390 °C corresponding to the complete dehydration and the lost of phen.  相似文献   

18.
The compound tetramethyl μ-monothiopyrophosphate (C4H12O6P2S) crystallizes in the monoclinic space group C 2/c, with (at -130°C) a = 10.322 Å, b = 8.229 Å, c = 12.062 Å, β = 98.44°, and Dcalc = 1.639 g/mL3 and Z = 4. The crystal structure has been determined by single crystal X-ray diffraction to give a final R value of 0.0329 for 614 independent observed reflections [F˚ > 2.5σ(F˚)]. The sulfur atom resides on a crystallographic two-fold axis. The P S P bond angle is 105.4° and the P S bond lengths are 2.093 Å. The bond angles around phosphorus range from 99.1° to 118.2°. The terminal PO bond is 1.465 Å, and the methoxyl P O bond is about 1.556 Å. The H3C O P bond angle is about 119.5°. Many structural features are interpreted in terms of π-bonding to phosphorus. Comparisons with the structures of pyrophosphate and related compounds indicate that the combined effects of increased acuteness of the P S P bond and the increased length of the P—S bonds lead to an increase of about 0.4 Å in the separation of phosphorus atoms in the sulfur-bridging compound. These facts, together with the weakness of the P S bond, must be taken into account in the interpretation of kinetic data for enzymatic reactions of phosphorothiolates as substrates in place of phosphates.  相似文献   

19.
Two new open‐framework zincophosphites, Zn(H6C4N2S)(HPO3) (TJPU‐4) and [C6N2H14]·[Zn3(HPO3)4] (TJPU‐5) have been hydrothermally synthesized by using 2‐mercapto‐1‐methylimidazole [MMI] and 1,4‐diazabicyclo[2.2.2]octane [DABCO] as templates. TJPU‐4 crystallizes in monoclinic space group P21/c with the cell parameters a = 8.787(4) Å, b = 9.732(4) Å, c = 10.515(4) Å, β = 105.316(6)°, V = 867.3(6) Å3. The structure of TJPU‐4 is constructed by ZnO3S tetrahedron and HPO3 pseudo‐pyramid to generate a layer of 4, 8‐network in bc plane. The organic template locates on the both sides of the 8‐membered rings and bonds to zinc atom through Zn–S bond. TJPU‐5 crystallizes in the triclinic space group with cell parameters a = 9.294 (5) Å, b = 9.976 (5) Å, c = 9.986 (5) Å, α = 85.692 (7)°, β = 82.010 (7)° and γ = 80.184 (7)°, V = 902.1 (8) Å3. A novel 4488 cage is found in TJPU‐5. The connections of Zn(1)O4, Zn(3)O4 and HPO3 groups give rise to an infinite corner‐shared four‐ring chain. Using Zn(2)O4 as four connected bridges, linkages of these chains produce a 3‐D framework with intersecting 8‐ring channels running along [100], [010], [001], [011] and [111] directions.  相似文献   

20.
The phase diagram of the system [Ph4P]Br/BiBr3 was investigated with the aid of DSC, TG and temperature dependent X‐ray powder diffraction measurements. By varying the reaction conditions, stoichiometry and crystallisation conditions of the reaction between BiBr3 and [Ph4P]Br four polynuclear bromobismuthates are formed. We report here the crystal structure of the solvation product [Ph4P]3[Bi2Br9] · CH3COCH3, which crystallises with monoclinic symmetry in the S. G. P21/n No. 14, a = 12.341(1), b = 32.005(3), c = 19.929(3) Å, β = 99.75(2)°, V = 7758(7) Å3, Z = 4 and the crystal structures of two modifications of the compound [Ph4P]4[Bi6Br22]. The α‐form, crystallises with triclinic symmetry in the S. G. P1 No. 2, a = 13.507(4) Å, b = 14.434(4) Å, c = 17.709(5) Å, α = 81.34(2)°, β = 72.42(2)°, γ = 72.53(2)°, V = 3132.7(1) Å3, Z = 2. The high‐temperature β‐form, crystallises with triclinic symmetry in the S. G. P1 No. 2, a = 13.893(4) Å, b = 14.267(3) Å, c = 16.580(3), α = 100.13(2)°, β = 96.56(2)°, γ = 110.01(2)°, V = 2985.5(1) Å3, Z = 2. Lattice parameters of [Ph4P]4[Bi8Br28] are also given. The thermal behaviour of the compounds and in addition the vibrational spectra of [Ph4P]3[Bi2Br9] · CH3COCH3 are presented and discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号