首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 875 毫秒
1.
Zhang H  Nie S  Etson CM  Wang RM  Walt DR 《Lab on a chip》2012,12(12):2229-2239
This paper describes a novel method for fabricating and sealing high-density arrays of femtoliter reaction chambers. We chemically etch one end of a 2.3 mm diameter glass optical fiber bundle to create an array of microwells. We then use a contact printing method to selectively modify the surface of the material between microwells with a hydrophobic silane. This modification makes it possible to fill the wells with aqueous solution and then seal them with a droplet of oil, forming an array of isolated reaction chambers. Individual β-galactosidase molecules trapped in these reaction chambers convert a substrate into a fluorescent product that can be readily detected because a high local concentration of product is achieved. This binary readout can be used for ultra-sensitive measurements of enzyme concentration. We observed that the percentage of wells showing enzyme activity was linearly dependent on the concentration of soluble β-galactosidase in the picomolar range. A similar response was also observed for streptavidin-β-galactosidase captured by biotinylated beads. These arrays are also suitable for performing single-molecule kinetics studies on hundreds to thousands of enzyme molecules simultaneously. We observed a broad distribution of catalytic rates for individual β-galactosidase molecules trapped in the microwells, in agreement with previous studies using similar arrays that were mechanically sealed. We have further demonstrated that this femtoliter fiber-optic array can be integrated into a PDMS microfluidic channel system and sealed with oil on-chip, creating an easy to use and high-throughput device for single-molecule analysis.  相似文献   

2.
Su J  Ren K  Dai W  Zhao Y  Zhou J  Wu H 《Electrophoresis》2011,32(23):3324-3330
We present a microfluidic system that can be directly coupled with microwell array and perform parallel electrophoresis in multiple capillaries simultaneously. The system is based on an array of glass capillaries, fixed in a polydimethylsiloxane (PDMS) microfluidic scaffold, with one end open for interfacing with microwells. In this capillary array, every two adjacent capillaries act as a pair to be coupled with one microwell; samples in the microwells are introduced and separated by simply applying voltage between two electrodes that are placed at the other ends of capillaries; thus no complicated circuit design is required. We evaluate the performance of this system and perform multiple CE with direct sample introduction from microwell array. Also with this system, we demonstrate the analysis of cellular contents of cells lysed in a microwell array. Our results show that this prototypic system is a promising platform for high-throughput analysis of samples in microwell arrays.  相似文献   

3.
An approach is described for controlling the spatial organization of mammalian cells using ferromagnetic nanowires in conjunction with patterned micromagnet arrays. The nanowires are fabricated by electrodeposition in nanoporous templates, which allows for precise control of their size and magnetic properties. The high aspect ratio and large remanent magnetization of the nanowires enable suspensions of cells bound to Ni nanowires to be controlled with low magnetic fields. This was used to produce one- and two-dimensional field-tuned patterning of suspended 3T3 mouse fibroblasts. Self-assembled one-dimensional chains of cells were obtained through manipulation of the wires' dipolar interactions. Ordered patterns of individual cells in two dimensions were formed through trapping onto magnetic microarrays of ellipsoidal permalloy micromagnets. Cell chains were formed on the arrays by varying the spacing between the micromagnets or the strength of fluid flow over the arrays. The positioning of cells on the array was further controlled by varying the direction of an external magnetic field. These results demonstrate the possibility of using magnetic nanowires to organize cells.  相似文献   

4.
We report a method for isolating individual paramagnetic beads in arrays of femtolitre-sized wells and detecting single enzyme-labeled proteins on these beads using sequential fluid flows in microfabricated polymer array assemblies. Arrays of femtolitre-sized wells were fabricated in cyclic olefin polymer (COP) using injection moulding based on DVD manufacturing. These arrays were bonded to a complementary fluidic structure that was also moulded in COP to create an enclosed device to allow delivery of liquids to the arrays. Enzyme-associated, paramagnetic beads suspended in aqueous solutions of enzyme substrate were delivered fluidically to the array such that one bead per well was loaded by gravity. A fluorocarbon oil was then flowed into the device to remove excess beads from the surface of the array, and to seal and isolate the femtolitre-sized wells containing beads and enzyme substrate. The device was then imaged using standard fluorescence imaging to determine which wells contained single enzyme molecules. The analytical performance of this device as the detector for digital ELISA compared favourably to the standard method, i.e., glass arrays mechanically sealed against a silicone gasket; prostate specific antigen (PSA) could be detected from 0.011 pg mL(-1) up to 100 pg mL(-1). The use of an enclosed fluidic device to isolate beads in single-molecule arrays offers a multitude of advantages for low-cost manufacturing, ease of automation, and instrument development to enable applications in biomarker validation and medical diagnosis.  相似文献   

5.
Meek CC  Pantano P 《Lab on a chip》2001,1(2):158-163
Microwell arrays were chemically etched across the distal faces of coherent fiber-optic bundles. A typical 1.6 mm diameter array comprised approximately 3000 individual microwells that were approximately 1-14 microm deep and approximately 22 microm wide. A methodology involving organosilane functionalized microwell surfaces and site-selective photobiotin chemistry was developed to partially fill microwells with a thin avidin layer. Avidin microwell arrays were characterized using charge coupled device optical microscopy and scanning electron microscopy. The avidin microwell arrays had individual well volumes that were six orders of magnitude smaller and up to 30-fold more numerous than commercially available avidin-coated microtiter plates. Preliminary results indicated that individual avidin microwells were ideally suited to house single biological cells. Using standard epifluorescence microscope optics and a mercury-arc lamp, an individual 22 microm wide microwell could be optically addressed and selectively filled with avidin without the use of a photolithographic mask. The ability to control both the size and position of avidin domains on the microwell array surface demonstrates the utility of this methodology towards fabricating a single microwell array with multianalyte sensing capabilities.  相似文献   

6.
水凝胶微孔阵列是细胞培养的新型基板软材料,其微孔形貌对细胞的行为产生直接的影响.但传统水凝胶微孔阵列形貌的表征手段缺乏在水溶液中原位和可逆表征的能力.本文以水溶液中的氧气为还原电对,应用扫描电化学显微镜(SECM)对水溶液中的聚乙二醇二甲基丙烯酸酯水凝胶微孔阵列的形貌进行了原位表征,得到了水凝胶微孔阵列表面的二维孔径和三维形貌信息,开发出采用SECM对水凝胶微孔阵列形貌进行原位、可逆、无损表征及提供三维形貌信息的新方法.  相似文献   

7.
Organizing leukocytes into high-density arrays makes these cells amenable to rapid optical characterization and subsequent sorting, pointing to clinical and basic science applications. The present paper describes development of a cytometry platform for creating high-density leukocyte arrays and demonstrates retrieval of single cells from the array. Poly(ethylene glycol)(PEG) photolithography was employed to fabricate arrays of microwells composed of PEG hydrogel walls and glass attachment pads 20 microm x 20 microm and 15 microm x 15 microm in size. PEG micropatterned glass surfaces were further modified with cell-adhesive ligands, poly-L-lysine, anti-CD5 and anti-CD19 antibodies, in order to engineer specific cell-surface interactions within the individual wells. Localization of the fluorescently-labeled proteins in the glass attachment pads of PEG microwells was visualized by fluorescence microscopy. Glass slides micropatterned with PEG and cell-adhesive ligands were exposed to T-lymphocytes for 30 min. These anchorage-independent cells became selectively captured in the ligand-modified microwells forming high-density cell arrays. Cell occupancy in the microwells was found to be antibody-dependent, reaching 94.6 +/- 2.3% for microwells decorated with T-cell specific anti-CD5 antibodies. Laser capture microdissection (LCM) was investigated as a method for sorting cells from the array and retrieval of single selected cells was demonstrated.  相似文献   

8.
Scanning probe microscopy has emerged as a powerful technique for mapping the surface morphology of biological specimens, including proteins and cells. In addition to providing measurements of topographic images, it enables the fabrication of micro-/nanostructures with a high spatial resolution. Herein, we demonstrate a simple and reliable method for the preparation of single Escherichia coli bacterial cell arrays using pre-fabricated microwell structures. Using a <100>-oriented silicon substrate, microwell arrays with inclined sidewalls were fabricated by scanning probe lithography and sequential chemical wet etching. The trapping efficiency of single cells was optimized by controlling the geometries of the microwells. These data suggest that single-cell arrays may be applicable in a variety of areas, including drug testing and toxicology, as well as basic cell biology.  相似文献   

9.
An electrochemical immunosensor for polychlorinated biphenyl (PCB) detection based on graphite screen-printed low-density arrays and on magnetic beads is reported.The immunological reaction for the detection of PCBs is based on a direct competitive assay using alkaline phosphatase (AP) as enzymatic label. After the immunochemical recognition, the modified magnetic beads are captured by a magnet on the surface of the graphite working electrode. The electrochemical detection is thus achieved through the addition of the AP substrate (α-naphthyl-phosphate).Two different antibodies (sIgG anti-PCB28 and rIgG anti-PCB77) were tested and compared in terms of sensitivity and ability to recognise different congeners. The developed electrochemical magneto-immunosensor (EMI) was successfully combined with solid-phase extraction (SPE) for the analysis of PCBs in milk samples. In spiked samples a recovery of 80% was obtained. The proposed strategy offers great promise for rapid, simple, cost-effective, and on-site analysis of clinical, food and environmental samples, considering also that low-density arrays allow the simultaneous analysis of different processed samples.  相似文献   

10.
Park MC  Hur JY  Kwon KW  Park SH  Suh KY 《Lab on a chip》2006,6(8):988-994
We present a simple cell docking method induced by receding meniscus to capture non-adherent yeast cells onto microwells inside a microfluidic channel. Microwells were fabricated either by capillary moulding of UV curable polyurethane acrylate (PUA) onto glass substrate or direct replica moulding of poly(dimethyl siloxane) (PDMS). A cell suspension of the budding yeast, Saccharomyces cerevisiae, was introduced into the microfluidic channel by surface tension driven capillary flow and a receding meniscus was subsequently generated by evaporation. As the meniscus progressed, one to multiple yeast cells were spontaneously captured onto microwells by lateral capillary force created at the bottom of the meniscus. Using this cell-based platform, we observed the response of yeast cells upon stimulation by a mating pheromone (alpha-factor) by monitoring the expression of green fluorescent protein (GFP) with time. It was observed that alpha-factor triggered the expression of GFP at 60 min after stimulation and the fluorescence intensity was sustained for an additional 60 min without changes.  相似文献   

11.
Sinkala E  Eddington DT 《Lab on a chip》2010,10(23):3291-3295
Oxygen tension is critical in a number of cell pathways but is often overlooked in cell culture. One reason for this is the difficulty in modulating and assessing oxygen tensions without disturbing the culture conditions. Toward this end, a simple method to generate oxygen-sensitive microwells was developed through embossing polystyrene (PS) and platinum(ii) octaethylporphyrin ketone (PtOEPK) thin films. In addition to monitoring the oxygen tension, microwells were employed in order to isolate uniform clusters of cells in microwells. The depth and width of the microwells can be adapted to different experimental parameters easily by altering the thin film processing or embossing stamp geometries. The thin oxygen sensitive microwell substrate is also compatible with high magnification modalities such as confocal imaging. The incorporation of the oxygen sensor into the microwells produces measurements of the oxygen tension near the cell surface. The oxygen sensitive microwells were calibrated and used to monitor oxygen tensions of Madin-Darby Canine Kidney Cells (MDCKs) cultured at high and low densities as a proof of concept. Wells 500 μm in diameter seeded with an average of 330 cells exhibited an oxygen level of 12.6% whereas wells seeded with an average of 20 cells per well exhibited an oxygen level of 19.5%, a 35.7% difference. This platform represents a new tool for culturing cells in microwells in a format amenable to high magnification imaging while monitoring the oxygen state of the culture media.  相似文献   

12.
In this work an electrochemical immunoassay, based on a direct competitive assay, was developed using magnetic beads as solid phase and carbon screen‐printed arrays as transducers for the detection of sulfonamides in food matrices such as honey. Magnetic beads coated with protein A were modified by immobilisation of specific antibodies and then the competition between the target analyte and the corresponding analyte‐labelled with an enzyme was carried out; after the immunosensing step, beads were captured by a magnet onto the working surfaces of a screen‐printed eight‐electrodes array for a multiple electrochemical detection. Screen‐printed eight‐electrodes arrays were chosen as transducers due to the possibility to repeat multiple analysis and to test different samples simultaneously. Alkaline Phosphatase (AP) was used as enzyme label and Differential Pulse Voltammetry (DPV) as fast electrochemical technique. Calibration curves demonstrate that the developed electrochemical immunoassay was able to detect this class of drugs in standard solutions at low concentrations (ng/mL levels). The short incubation times (25 min) and the fast electrochemical measurement (10 sec) make of these systems a possible alternative to classic ELISA tests.  相似文献   

13.
Microsystems based on microwell arrays have been widely used for studies on single living cells. In this work, we focused on the subcellular level in order to monitor biological responses directly on individual organelles. Consequently, we developed microwell arrays for the entrapment and fluorescence microscopy of single isolated organelles, mitochondria herein. Highly dense arrays of 3-μm mean diameter wells were obtained by wet chemical etching of optical fiber bundles. Favorable conditions for the stable entrapment of individual mitochondria within a majority of microwells were found. Owing to NADH auto-fluorescence, the metabolic status of each mitochondrion was analyzed at resting state (Stage 1), then following the addition of a respiratory substrate (Stage 2), ethanol herein, and of a respiratory inhibitor (Stage 3), antimycin A. Mean levels of mitochondrial NADH were increased by 29 % and 35 % under Stages 2 and 3, respectively. We showed that mitochondrial ability to generate higher levels of NADH (i.e., its metabolic performance) is not correlated either to the initial energetic state or to the respective size of each mitochondrion. This study demonstrates that microwell arrays allow metabolic studies on populations of isolated mitochondria with a single organelle resolution.
Figure
Microwell arrays, build up from optical fiber bundles, were used for the entrapment and monitoring by fluorescence microscopy of populations of single mitochondria. Mitochondrial NADH was quantified under several metabolic states to study individual mitochondria responses simultaneously with whole population behaviors.  相似文献   

14.
In addition to rigidity, matrix composition, and cell shape, dimensionality is now considered an important property of the cell microenvironment which directs cell behavior. However, available tools for cell culture in two-dimensional (2D) versus three-dimensional (3D) environments are difficult to compare, and no tools exist which provide 3D shape control of single cells. We developed polydimethylsiloxane (PDMS) substrates for the culture of single cells in 3D arrays which are compatible with high-resolution microscopy. Cell adhesion was limited to within microwells by passivation of the flat upper surface through 'wet-printing' of a non-fouling polymer and backfilling of the wells with specific adhesive proteins or lipid bilayers. Endothelial cells constrained within microwells were viable, and intracellular features could be imaged with high resolution objectives. Finally, phalloidin staining of actin stress fibers showed that the cytoskeleton of cells in microwells was 3D and not limited to the cell-substrate interface. Thus, microwells can be used to produce microenvironments for large numbers of single cells with 3D shape control and can be added to a repertoire of tools which are ever more sought after for both fundamental biological studies as well as high throughput cell screening assays.  相似文献   

15.
A technique for micropatterning of proteins on a nonplanar surface to improve the coverage and functionality of biomolecules is demonstrated. A nonplanar microstructure is created by the self-assembly of polystyrene microspheres into an array of microwells on a silicon wafer to allow the integration of a nonplanar spot on a planar chip. After the microspheres were deposited into the microwells, they were conjugated with proteins. The curve surfaces of the microspheres present more surface area for attaching biomolecules which will increase the density of biomolecules and, hence, the sensitivity for detection. Moreover, proteins immobilized on a curved surface can retain their native structures and function better than on a planar surface because of a smaller area of interaction between the protein and the substrate. Patterning of biomolecules was tested with two model fluorescent proteins. The results show that precise patterning of biomolecules on a nonplanar spot can be achieved with this technique.  相似文献   

16.
Currently micropatterning of proteins is mainly carried out on a planar substrate, which involves multi-step surface modifications directly on the substrate. Efficiency of chemical reactions is usually low, resulting in low signal-to-noise (S/N) ratio and poor repeatability of results. Here we presented a micropatterning method using polystyrene nanospheres with non-planar surface as a solid support for attaching proteins, which introduces many advantages. The patterning of proteins was carried out in two approaches: one was to dispense polystyrene nanospheres into an array of microwells and then attach proteins onto the nanospheres, and another was to coat polystyrene nanospheres with proteins first and then deposit the spheres into the microwells. For both approaches, a uniform pattern of proteins was generated. The amount of proteins attached via nanospheres was much higher than that on planar surface.  相似文献   

17.
The layer-by-layer assembly of poly(diallyldimethylammonium chloride) and poly(sodium 4-styrenesulfonate) is studied on templates with imprinted arrays of microwells ranging from 2 to 25 μm and different aspect ratios. The thickness and microstructure of polyelectrolyte multilayers (PEMs) are measured using scanning electron microscopy. At 0.2 M ionic strength, the PEM film evenly coats the template both inside and outside the microwells. If the film is thinner than the critical value of about 400 nm, PEM microstructures collapse upon dissolving the template. Euler's model of critical stress is used to describe the collapse. At 2 M ionic strength, a substantially thinner PEM film is assembled inside the 25 μm wells than outside. If the well diameter is reduced to 7 and 2 μm, a much thicker PEM film is formed inside the microwells. These observations have been attributed to the changing of polyelectrolyte conformation in the solutions.  相似文献   

18.
《Electrophoresis》2018,39(7):948-956
Microwell arrays are widely used for the analysis of fluorescent‐labelled biomaterials. For rapid detection and automated analysis of microwell arrays, the computational image analysis is required. Support Vector Machines (SVM) can be used for this task. Here, we present a SVM‐based approach for the analysis of microwell arrays consisting of three distinct steps: labeling, training for feature selection, and classification into three classes. The three classes are filled, partially filled, and unfilled microwells. Next, the partially filled wells are analyzed by SVM and their tendency towards filled or unfilled tested through applying a Gaussian filter. Through this, all microwells can be categorized as either filled or unfilled by our algorithm. Therefore, this SVM‐based computational image analysis allows for an accurate and simple classification of microwell arrays.  相似文献   

19.
Dewetting of thin films of charged polymer solutions produces complex patterns that can be applied to direct nanoparticle organization on solid substrates. The morphology produced by dewetting can be controlled by the solution properties, temperature, and substrate wetting. In this work, new results on this liquid-template self-assembly system are presented, with special emphasis on producing large arrays of organized nanoparticles. On a hydrophilic substrate with complete wetting, the patterns include polygonal networks and parallel-track arrays that extend over several hundreds of microns. These large structures are formed under well-controlled drying conditions and characterized by scanning electron microscopy, which is better suited for the examination of large as well as small areas than atomic force microscopy. On partial wetting substrates, new patterns are observed, including a complex set of parallel curved bands with variable particle number densities.  相似文献   

20.
An alternative approach for fabricating a protein array at nanoscale is suggested with a capability of characterization and/or localization of multiple components on a nanoarray. Fluorescent micro- and nanobeads each conjugated with different antibodies are assembled by size-dependent self-assembly (SDSA) onto nanometer wells that were created on a polymethyl methacrylate (PMMA) substrate by electron beam lithography (EBL). Antibody-conjugated beads of different diameters are added serially and electrostatically attached to corresponding wells through electrostatic attraction between the charged beads (confirmed by zeta potential analysis) and exposed p-doped silicon substrate underneath the PMMA layer. This SDSA method is enhanced by vibrated-wire-guide manipulation of droplets on the PMMA surface containing nanometer wells. Saturation rates of antibody-conjugated beads to the nanometer patterns are up to 97% under one component and 58–70% under two components nanoarrays. High-density arrays (up to 40,000 wells) could be fabricated, which can also be multi-component. Target detection utilizes fluorescence resonance energy transfer (FRET) from fluorescent beads to fluorescent-tagged secondary antibodies to Octamer-4 (Oct4), which eliminates the need for multiple steps of rinsing. The 100 nm green beads are covalently conjugated with anti-Oct4 to capture Oct4 peptides (39 kDa); where the secondary anti-Oct4 and F(ab)2 fragment of anti-gIgG tagged with phycoerythrin are then added to function as an indicator of Oct4 detection. FRET signals are detected through confocal microscopes, and further confirmed by Fluorolog3 spectrofluorometer. The success rates of detecting Oct4 are 32% and 14% of the beads in right place under one and two component nanoarrays, respectively. Ratiometric FRET is used to quantify the amount of Oct4 peptides per each bead, which is estimated about 2 molecules per bead.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号