首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The recent demonstration of a discharge-driven oxygen-iodine laser has generated renewed interest in the kinetics of iodine interacting with electronically excited O2 and atomic O. Kinetic measurements that are of relevance to the laser have been carried out using 193 nm pulsed laser photolysis of N2O/I2/CO2 mixtures. Singlet oxygen was generated in this system by the reaction O(1D)+N2O-->O2(a1Deltag, X3Sigma-g)+N2. The fraction of electronically excited O2 produced by this channel was shown to be >0.9. The secondary photochemistry of the N2O/I2/CO2 system was characterized by monitoring the time histories of I(2P1/2), I2, IO, and O2(a). Kinetic modeling of these data was used to determine the rate constant for the deactivation of I(2P1/2) by O(3P) (k=(1.2+/-0.1)x10(-11) cm3 s(-1)). Quenching of I(2P1/2) by O(3P) is suppressed in the discharge-driven laser by using NO2 to scavenge the O atoms. The reaction O(3P)+NO2-->O2+NO is sufficiently exothermic for the production of O2(a), and it has been speculated that this channel may be significant in the laser excitation kinetics. Photolysis of NO2 was used to probe this reaction. O2(a) was not detected, and an upper bound of <0.1 for its production in the reaction of O(3P) or O(1D) with NO2 was established.  相似文献   

2.
Oxygen-iodine lasers that utilize electrical or microwave discharges to produce singlet oxygen are currently being developed. The discharge generators differ from conventional chemical singlet oxygen generators in that they produce significant amounts of atomic oxygen. Post-discharge chemistry includes channels that lead to the formation of ozone. Consequently, removal of I(2P1/2) by O atoms and O3 may impact the efficiency of discharge driven iodine lasers. In the present study, we have measured the rate constants for quenching of I(2P1/2) by O(3P) atoms and O3 using pulsed laser photolysis techniques. The rate constant for quenching by O3, (1.8 +/- 0.4) x 10(-12) cm3 s-1, was found to be a factor of 5 smaller than the literature value. The rate constant for quenching by O(3P) was (1.2 +/- 0.2) x 10(-11) cm3 s-1.  相似文献   

3.
We report rate coefficients at 293 K for the collisional relaxation of H2O molecules from the highly excited /04>(+/-) vibrational states in collisions with H2O, Ar, H2, N2, and O2. In our experiments, the mid R:04(-) state is populated by direct absorption of radiation from a pulsed dye laser tuned to approximately 719 nm. Evolution of the population in the (/04>(+/-)) levels is observed using the combination of a frequency-quadrupled Nd:YAG laser, which selectively photolyses H2O(/04>(+/-)), and a frequency-doubled dye laser, which observes the OH(v=0) produced by photodissociation via laser-induced fluorescence. The delay between the pulse from the pump laser and those from the photolysis and probe lasers was systematically varied to generate kinetic decays. The rate coefficients for relaxation of H2O(/04>(+/-)) obtained from these experiments, in units of cm3 molecule(-1) s(-1), are: k(H2O)=(4.1+/-1.2) x 10(-10), k(Ar)=(4.9+/-1.1) x 10(-12), k(H2)=(6.8+/-1.1) x 10(-12), k(N2)=(7.7+/-1.5) x 10(-12), k(O2)=(6.7+/-1.4) x 10(-12). The implications of these results for our previous reports of rate constants for the removal of H2O molecules in selected vibrational states by collisions with H atoms (P. W. Barnes et al., Faraday Discuss. Chem. Soc. 113, 167 (1999) and P. W. Barnes et al., J. Chem. Phys. 115, 4586 (2001).) are fully discussed.  相似文献   

4.
The absolute rate coefficients at 298 K for the reactions of O(2) (-) + N((4)S(3/2)) and O(2) (-) + O((3)P) have been determined in a selected-ion flow tube instrument. O atoms are generated by the quantitative titration of N atoms with NO, where the N atoms are produced by microwave discharge on N(2). The experimental procedure allows for the determination of rate constants for the reaction of the reactant ion with N((4)S(3/2)) and O((3)P). The rate coefficient for O(2) (-) + N is found to be 2.3x10(-10)+/-40% cm(3) molecule(-1) s(-1), a factor of 2 slower than previously determined. In addition, it was found that the reaction proceeds by two different reaction channels to give (1) NO(2)+e(-) and (2) O(-)+NO. The second channel was not reported in the previous study and accounts for ca. 35% of the reaction. An overall rate coefficient of 3.9 x 10(-10) cm(3) molecule(-1) s(-1) was determined for O(2) (-) + O, which is slightly faster than previously reported. Branching ratios for this reaction were determined to be <55%O(3) + e(-) and >45%O(-) + O(2).  相似文献   

5.
Laser-induced fluorescence spectroscopy via excitation of the A2pi(3/2) <-- X2pi(3/2) (2,0) band at 445 nm was used to monitor IO in the presence of NO2 following its generation in the reactions O(3P) + CF3I and O(3P) + I2. Both photolysis of O3 (248 nm) and NO2 (351 nm) were used to initiate the production of IO. The rate coefficients for the thermolecular reaction IO + NO2 + M --> IONO2 + M were measured in air, N2, and O2 over the range P = 18-760 Torr, covering typical tropospheric conditions, and were found to be in the falloff region. No dependence of k1 upon bath gas identity was observed, and in general, the results are in good agreement with recent determinations. Using a Troe broadening factor of F(B) = 0.4, the falloff parameters k0(1) = (9.5 +/- 1.6) x 10(-31) cm6 molecule(-2) s(-1) and k(infinity)(1) = (1.7 +/- 0.3) x 10(-11) cm3 molecule(-1) s(-1) were determined at 294 K. The temporal profile of IO at elevated temperatures was used to investigate the thermal stability of the product, IONO2, but no evidence was observed for the regeneration of IO, consistent with recent calculations for the IO-NO2 bond strength being approximately 100 kJ mol(-1). Previous modeling studies of iodine chemistry in the marine boundary layer that utilize values of k1 measured in N2 are hence validated by these results conducted in air. The rate coefficient for the reaction O(3P) + NO2 --> O2 + NO at 294 K and in 100 Torr of air was determined to be k2 = (9.3 +/- 0.9) x 10(-12) cm3 molecule(-1) s(-1), in good agreement with recommended values. All uncertainties are quoted at the 95% confidence limit.  相似文献   

6.
The title reactions were studied using laser flash photolysis/laser-induced-fluorescence (FP-LIF) techniques. The two spin-orbit states, Cl*(2P(1/2)) and Cl(2P(3/2)), were detected using LIF at 135.2 and 134.7 nm, respectively. Measured reaction rate constants were as follows (units of cm3 molecule(-1) s(-1)): k(Cl(2P(3/2))+CH3OH) = (5.35 +/- 0.24) x 10(-11), k(Cl(2P(3/2))+C2H5OH) = (9.50 +/- 0.85) x 10(-11), k(Cl(2P(3/2))+n-C3H7OH) = (1.71 +/- 0.11) x 10(-10), and k(Cl(2P(3/2))+i-C3H7OH) = (9.11 +/- 0.60) x 10(-11). Measured rate constants for total removal of Cl*(2P(1/2)) in collisions with CH3OH, C2H5OH, n-C3H7OH, and i-C3H7OH were (1.95 +/- 0.13) x 10(-10), (2.48 +/- 0.18) x 10(-10), (3.13 +/- 0.18) x 10(-10), and (2.84 +/- 0.16) x 10(-10), respectively; quoted errors are two-standard deviations. Although spin-orbit excited Cl*(2P(1/2)) atoms have 2.52 kcal/mol more energy than Cl(2P(3/2)), the rates of chemical reaction of Cl*(2P(1/2)) with CH3OH, C2H5OH, n-C3H7OH, and i-C3H7OH are only 60-90% of the corresponding Cl(2P(3/2)) atom reactions. Under ambient conditions spin-orbit excited Cl* atoms are responsible for 0.5%, 0.5%, 0.4%, and 0.7% of the observed reactivity of thermalized Cl atoms toward CH3OH, C2H5OH, n-C3H7OH, and i-C3H7OH, respectively.  相似文献   

7.
Pulse radiolysis and flash photolysis are used to generate the hyponitrite radicals (HN2O2(*)/N2O2(*-)) by one-electron oxidation of the hyponitrite in aqueous solution. Although the radical decay conforms to simple second-order kinetics, its mechanism is complex, comprising a short chain of NO release-consumption steps. In the first, rate-determining step, two N2O2(*-) radicals disproportionate with the rate constant 2k = (8.2 +/- 0.5) x 10(7) M(-1) s(-1) (at zero ionic strength) effectively in a redox reaction regenerating N2O2(2-) and releasing two NO. This occurs either by electron transfer or, more likely, through radical recombination-dissociation. Each NO so-produced rapidly adds to another N2O2(*-), yielding the N3O3(-) ion, which slowly decomposes at 300 s(-1) to the final N2O + NO2(-) products. The N2O2(*-) radical protonates with pKa = 5.6 +/- 0.3. The neutral HN2O2(*) radical decays by an analogous mechanism but much more rapidly with the apparent second-order rate constant 2k = (1.1 +/- 0.1) x 10(9) M(-1) s(-1). The N2O2(*-) radical shows surprisingly low reactivity toward O2 and O2(*-), with the corresponding rate constants below 1 x 10(6) and 5 x 10(7) M(-1) s(-1). The previously reported rapid dissociation of N2O2(*-) into N2O and O(*-) does not occur. The thermochemistry of HN2O2(*)/N2O2(*-) is discussed in the context of these new kinetic and mechanistic results.  相似文献   

8.
The kinetics and mechanism of the reactions of Cl atoms and OH radicals with CH3CH2CHO were investigated at room temperature using two complementary techniques: flash photolysis/UV absorption and continuous photolysis/FTIR smog chamber. Reaction with Cl atoms proceeds predominantly by abstraction of the aldehydic hydrogen atom to form acyl radicals. FTIR measurements indicated that the acyl forming channel accounts for (88 +/- 5)%, while UV measurements indicated that the acyl forming channel accounts for (88 +/- 3)%. Relative rate methods were used to measure: k(Cl + CH3CH2CHO) = (1.20 +/- 0.23) x 10(-10); k(OH + CH3CH2CHO) = (1.82 +/- 0.23) x 10(-11); and k(Cl + CH3CH2C(O)Cl) = (1.64 +/- 0.22) x 10(-12) cm3 molecule(-1) s(-1). The UV spectrum of CH3CH2C(O)O2, rate constant for self-reaction, and rate constant for cross-reaction with CH3CH2O2 were determined: sigma(207 nm) = (6.71 +/- 0.19) x 10(-18) cm2 molecule(-1), k(CH3CH2C(O)O2 + CH3CH2C(O)O2) = (1.68 +/- 0.08) x 10(-11), and k(CH3CH2C(O)O2 + CH3CH2O2) = (1.20 +/- 0.06) x 10(-11) cm3 molecule(-1) s(-1), where quoted uncertainties only represent 2sigma statistical errors. The infrared spectrum of C2H5C(O)O2NO2 was recorded, and products of the Cl-initiated oxidation of CH3CH2CHO in the presence of O2 with, and without, NO(x) were identified. Results are discussed with respect to the atmospheric chemistry of propionaldehyde.  相似文献   

9.
A series of reactions involving Fe(+) ions were studied by the pulsed laser ablation of an iron target, with detection of ions by quadrupole mass spectrometry at the downstream end of a fast flow tube. The reactions of Fe(+) with N(2)O, N(2) and O(2) were studied in order to benchmark this new technique. Extending measurements of the rate coefficient for Fe(+) + N(2)O from 773 K to 185 K shows that the reaction exhibits marked non-Arrhenius behaviour, which appears to be explained by excitation of the N(2)O bending vibrational modes. The recombination of Fe(+) with CO(2) and H(2)O in He was then studied over a range of pressure and temperature. The data were fitted by RRKM theory combined with ab initio quantum calculations on Fe(+).CO(2) and Fe(+).H(2)O, yielding the following results (120-400 K and 0-10(3) Torr). For Fe(+) + CO(2): k(rec,0) = 1.0 x 10(-29) (T/300 K)(-2.31) cm(6) molecule(-2) s(-1); k(rec,infinity) = 8.1 x 10(-10) cm(3) molecule(-1) s(-1). For Fe(+) + H(2)O: k(rec,0) = 5.3 x 10(-29) (T/300 K)(-2.02) cm(6) molecule(-2) s(-1); k(rec,infinity) = 2.1 x 10(-9) (T/300 K)(-0.41) cm(3) molecule(-1) s(-1). The uncertainty in these rate coefficients is determined using a Monte Carlo procedure. A series of exothermic ligand-switching reactions were also studied at 294 K: k(Fe(+).N(2) + O(2)) = (3.17 +/- 0.41) x 10(-10), k(Fe(+).CO(2) + O(2)) = (2.16 +/- 0.35) x 10(-10), k(Fe(+).N(2) + H(2)O) = (1.25 +/- 0.14) x 10(-9) and k(Fe(+).O(2) + H(2)O) = (8.79 +/- 1.30) x 10(-10) cm(3) molecule(-1) s(-1), which are all between 36 and 52% of their theoretical upper limits calculated from long-range capture theory. Finally, the role of these reactions in the chemistry of meteor-ablated iron in the upper atmosphere is discussed. The removal rates of Fe(+) by N(2), O(2), CO(2) and H(2)O at 90 km altitude are approximately 0.1, 0.07, 3 x 10(-4) and 1 x 10(-6) s(-1), respectively. The initially formed Fe(+).N(2) and Fe(+).O(2) are converted into the H(2)O complex at approximately 0.05 s(-1). Fe(+).H(2)O should therefore be the most abundant single-ligand Fe(+) complex in the mesosphere below 90 km.  相似文献   

10.
Rate constants for the reactions of OH radicals and NO3 radicals with O,O-diethyl methylphosphonothioate [(C(2)H(5)O)(2)P(S)CH(3); DEMPT] and O,O,O-triethyl phosphorothioate [(C(2)H(5)O)(3)PS; TEPT] have been measured using relative rate methods at atmospheric pressure of air over the temperature range 296-348 K for the OH radical reactions and at 296 +/- 2 K for the NO(3) radical reactions. At 296 +/- 2 K, the rate constants obtained for the OH radical reactions (in units of 10(-11) cm(3) molecule(-1) s(-1)) were 20.4 +/- 0.8 and 7.92 +/- 0.27 for DEMPT and TEPT, respectively, and those for the NO(3) radical reactions (in units of 10(-15) cm(3) molecule(-1) s(-1)) were 2.01 +/- 0.20 and 1.03 +/- 0.10, respectively. Upper limits to the rate constants for the reactions of O(3) with DEMPT and TEPT of <6 x 10(-20) cm(3) molecule(-1) s(-1) were determined in each case. Rate constants for the OH radical reactions, measured relative to k(OH + alpha-pinene) = 1.21 x 10(-11) e(436/T) cm(3) molecule(-1) s(-1), resulted in the Arrhenius expressions k(OH + DEMPT) = 1.08 x 10(-11) e(871+/-25)/T cm(3) molecule(-1) s(-1) and k(OH + TEPT) = 8.21 x 10(-13) e(1353+/-49)/T cm(3) molecule(-1) s(-1) over the temperature range 296-348 K, where the indicated errors are two least-squares standard deviations and do not include the uncertainties in the reference rate constant. Diethyl methylphosphonate was identified and quantified from the OH radical and NO(3) radical reactions with DEMPT, with formation yields of 21 +/- 4%, independent of temperature, from the OH radical reaction and 62 +/- 11% from the NO(3) radical reaction at 296 +/- 2 K. Similarly, triethyl phosphate was identified and quantified from the OH radical and NO(3) radical reactions with TEPT, with formation yields of 56 +/- 9%, independent of temperature, from the OH radical reaction and 78 +/- 15% from the NO(3) radical reaction at 296 +/- 2 K.  相似文献   

11.
The kinetics of the reaction between O atoms and OH radicals, both in their electronic ground state, have been investigated at temperatures down to ca. 39 K. The experiments employed a CRESU (Cinétique deRéaction en Ecoulement Supersonique Uniforme) apparatus to attain low temperatures. Both reagents were created using pulsed laser photolysis at 157.6 nm of mixtures containing H2O and O2 diluted in N2 carrier gas. OH radicals were formed by both direct photolysis of H2O and the reaction between O(1D) atoms and H2O. O(3P) atoms were formed both as a direct product of O2 photolysis and by the rapid quenching of O(1D) atoms formed in that photolysis by N2 and O2. The rates of removal of OH radicals were observed by laser-induced fluorescence, and concentrations of O atoms were estimated from a knowledge of the absorption cross-section for O2 at 157.6 nm and of the measured fluence from the F2 laser at this wavelength. To obtain a best estimate of the rate constants for the O + OH reaction, we had to correct the raw experimental data for the following: (a) the decrease in the laser fluence along the jet due to the absorption by O2 in the gas mixture, (b) the increase in temperature, and consequent decrease in gas density, as a result of energy released in the photochemical and chemical processes that occurred, and (c) the formation of OH(v = 0) as a result of relaxation, particularly by O2, of OH radicals formed in levels v > 0. Once these corrections were made, the rate constant for reaction between OH and O(3P) atoms showed little variation in the temperature range of 142 to 39 K and had a value of (3.5 +/- 1.0) x 10(-11) cm3 molecule(-1) s(-1). It is recommended that this value is used in future chemical models of dense interstellar clouds.  相似文献   

12.
Formation of the ground-state nitrogen atom, N((4)S), following 193.3-nm ArF laser irradiation of NO and NO(2) was detected directly by a technique of laser-induced fluorescence (LIF) spectroscopy at 120.07 nm. Tunable vacuum ultraviolet (VUV) laser radiation around 120.07 nm was generated by two-photon resonance four-wave sum frequency mixing in Hg vapor. Photoexcitation processes of NO and NO(2) giving rise to the N((4)S) formation are discussed on the basis of the Doppler profiles of the nascent N((4)S) atoms produced from the photolysis of NO and NO(2) and the photolysis laser-power dependence of the N((4)S) signal intensities. Using laser flash photolysis and vacuum ultraviolet laser-induced fluorescence detection, the kinetics of the reactions of N((4)S) with NO and NO(2) have been investigated at 295 +/- 2 K. The rate constants for the reactions of N((4)S) with NO and NO(2) were determined to be (3.8 +/- 0.2) x 10(-11) and (7.3 +/- 0.9) x 10(-12) cm(3) molecule(-1) s(-1), respectively, where the quoted uncertainties are 2sigma statistical uncertainty including estimated systematic error.  相似文献   

13.
When bromoform (CHBr3) is photolyzed at 266 or 303 nm in the presence of O2 and NO, the formation of secondary Br atoms is observed. By following the rate of growth of this secondary Br atom signal as a function of conditions, rate constants have been determined for the reactions CHBr2 + O2, CHBr2 + NO (both pressure-dependent), and CHBr2O2 + NO (k(2a) = (1.74 +/- 0.16) x 10(-11) cm3 molecule(-1) s(-1) at 23 degrees C). By measuring the amplitude of the secondary Br signal compared to the primary Br formed in the initial photolysis, it is established that the CHBr2O radical spontaneously decomposes to form CHBrO + Br at least 90%, and probably 100%, of the time, in agreement with previous work and with recent ab initio calculations. A survey of four other polybrominated methanes, CH2Br2, CHClBr2, CF2Br2, and CBr4, shows that they all generate secondary Br atoms when photolyzed at 266 nm in the presence of O2 and NO, suggesting that their reaction sequences are similar to that of bromoform.  相似文献   

14.
The motivation for the present study comes from the preceding paper where it is suggested that accepted rate constants for OH + NO2 --> NO + HO2 are high by approximately 2. This conclusion was based on a reevaluation of heats of formation for HO2, OH, NO, and NO2 using the Active Thermochemical Table (ATcT) approach. The present experiments were performed in C2H5I/NO2 mixtures, using the reflected shock tube technique and OH-radical electronic absorption detection (at 308 nm) and using a multipass optical system. Time-dependent profile decays were fitted with a 23-step mechanism, but only OH + NO2, OH + HO2, both HO2 and NO2 dissociations, and the atom molecule reactions, O + NO2 and O + C2H4, contributed to the decay profile. Since all of the reactions except the first two are known with good accuracy, the profiles were fitted by varying only OH + NO2 and OH + HO2. The new ATcT approach was used to evaluate equilibrium constants so that back reactions were accurately taken into account. The combined rate constant from the present work and earlier work by Glaenzer and Troe (GT) is k(OH+NO2) = 2.25 x 10(-11) exp(-3831 K/T) cm3 molecule(-1) s(-1), which is a factor of 2 lower than the extrapolated direct value from Howard but agrees well with NO + HO2 --> OH + NO2 transformed with the updated equilibrium constants. Also, the rate constant for OH + HO2 suitable for combustion modeling applications over the T range (1200-1700 K) is (5 +/- 3) x 10(-11) cm3 molecule(-1) s(-1). Finally, simulating previous experimental results of GT using our updated mechanism, we suggest a constant rate for k(HO2+NO2) = (2.2 +/- 0.7) x 10(-11) cm3 molecule(-1) s(-1) over the T range 1350-1760 K.  相似文献   

15.
The technique of pulsed laser photolysis was coupled to laser induced fluorescence detection of iodine oxide (IO) to measure rate coefficients, k for the reactions IO + CH(3)O(2)--> products (R1, 30-318 Torr N(2)), IO + CF(3)O(2)--> products (R2, 70-80 Torr N(2)), and IO + O(3)--> OIO + O(2) (R3a). Values of k(1) = (2 +/- 1) x 10(-12) cm(3) molecule(-1) s(-1), k(2) = (3.6 +/- 0.8) x 10(-11) cm(3) molecule(-1) s(-1), and k(3a) <5 x 10(-16) cm(3) molecule(-1) s(-1) were obtained at T = 298 K. In the course of this work, the product yield of IO from the reaction of CH(3)O(2) with I was determined to be close to zero, whereas CH(3)OOI was formed efficiently at 70 Torr N(2). Similarly, no evidence was found for IO formation in the CF(3)O(2) + I reaction. An estimate of the rate coefficients k(CH(3)O(2) + I) = 2 x 10(-11) cm(3) molecule(-1) s(-1) and k(CH(3)OOI + I) = 1.5 x 10(-10) cm(3) molecule(-1) s(-1) was also obtained. The results on k(1)-k(3) are compared to the limited number of previous investigations and the implications for the chemistry of the marine boundary layer are briefly discussed.  相似文献   

16.
The kinetics of the O + HCNO reaction were investigated by a relative rate technique using infrared diode laser absorption spectroscopy. Laser photolysis (355 nm) of NO2 was used to produce O atoms, followed by O atom reactions with CS2, NO2, and HCNO, and infrared detection of OCS product from the O + CS2 reaction. Analysis of the experiment data yields a rate constant of k1= (9.84 +/- 3.52) x 10-12 exp[(-195 +/- 120)/T)] (cm3 molecule-1 s-1) over the temperature range 298-375 K, with a value of k1 = (5.32 +/- 0.40) x 10-12 cm3 molecule-1 s-1 at 298 K. Infrared detection of product species indicates that CO producing channels, probably CO + NO + H, dominate the reaction.  相似文献   

17.
The absolute absorption cross section of IONO(2) was measured by the pulsed photolysis at 193 nm of a NO(2)/CF(3)I mixture, followed by time-resolved Fourier transform spectroscopy in the near-UV. The resulting cross section at a temperature of 296 K over the wavelength range from 240 to 370 nm is given by log(10)(sigma(IONO(2))/cm(2) molecule(-1)) = 170.4 - 3.773 lambda + 2.965 x 10(-2)lambda(2)- 1.139 x 10(-4)lambda(3) + 2.144 x 10(-7)lambda(4)- 1.587 x 10(-10)lambda(5), where lambda is in nm; the cross section, with 2sigma uncertainty, ranges from (6.5 +/- 1.9) x 10(-18) cm(2) at 240 nm to (5 +/- 3) x 10(-19) cm(2) at 350 nm, and is significantly lower than a previous measurement [J. C. M?ssinger, D. M. Rowley and R. A. Cox, Atmos. Chem. Phys., 2002, 2, 227]. The photolysis quantum yields for IO and NO(3) production at 248 nm were measured using laser induced fluorescence of IO at 445 nm, and cavity ring-down spectroscopy of NO(3) at 662 nm, yielding phi(IO) 相似文献   

18.
The reactions between Ca(+)(4(2)S(1/2)) and O(3), O(2), N(2), CO(2) and H(2)O were studied using two techniques: the pulsed laser photo-dissociation at 193 nm of an organo-calcium vapour, followed by time-resolved laser-induced fluorescence spectroscopy of Ca(+) at 393.37 nm (Ca(+)(4(2)P(3/2)-4(2)S(1/2))); and the pulsed laser ablation at 532 nm of a calcite target in a fast flow tube, followed by mass spectrometric detection of Ca(+). The rate coefficient for the reaction with O(3) is essentially independent of temperature, k(189-312 K) = (3.9 +/- 1.2) x 10(-10) cm(3) molecule(-1) s(-1), and is about 35% of the Langevin capture frequency. One reason for this is that there is a lack of correlation between the reactant and product potential energy surfaces for near coplanar collisions. The recombination reactions of Ca(+) with O(2), CO(2) and H(2)O were found to be in the fall-off region over the experimental pressure range (1-80 Torr). The data were fitted by RRKM theory combined with quantum calculations on CaO(2)(+), Ca(+).CO(2) and Ca(+).H(2)O, yielding the following results with He as third body when extrapolated from 10(-3)-10(3) Torr and a temperature range of 100-1500 K. For Ca(+) + O(2): log(10)(k(rec,0)/cm(6) molecule(-2) s(-1)) = -26.16 - 1.113log(10)T- 0.056log(10)(2)T, k(rec,infinity) = 1.4 x 10(-10) cm(3) molecule(-1) s(-1), F(c) = 0.56. For Ca(+) + CO(2): log(10)(k(rec,0)/ cm(6) molecule(-2) s(-1)) = -27.94 + 2.204log(10)T- 1.124log(10)(2)T, k(rec,infinity) = 3.5 x 10(-11) cm(3) molecule(-1) s(-1), F(c) = 0.60. For Ca(+) + H(2)O: log(10)(k(rec,0)/ cm(6) molecule(-2) s(-1)) = -23.88 - 1.823log(10)T- 0.063log(10)(2)T, k(rec,infinity) = 7.3 x 10(-11)exp(830 J mol(-1)/RT) cm(3) molecule(-1) s(-1), F(c) = 0.50 (F(c) is the broadening factor). A classical trajectory analysis of the Ca(+) + CO(2) reaction is then used to investigate the small high pressure limiting rate coefficient, which is significantly below the Langevin capture frequency. Finally, the implications of these results for calcium chemistry in the mesosphere are discussed.  相似文献   

19.
The technique of pulsed laser photolysis coupled to LIF detection of IO was used to study IO + NO(3) --> OIO + NO(2); I + NO(3) --> (products); CH(2)I + O(2) --> (products); and O((3)P) + CH(2)I(2) --> IO + CH(2)I, at ambient temperature. was observed for the first time in the laboratory and a rate coefficient of k(1 a) = (9 +/- 4) x 10(-12) cm(3) molecule(-1) s(-1) obtained. For , a value of k(2) (298 K) = (1.0 +/- 0.3) x 10(-10) cm(3) molecule(-1) s(-1) was obtained, and a IO product yield close to unity determined. IO was also formed in a close-to-unity yield in , whereas in an upper limit of alpha(3)(IO) < 0.12 was derived. The implications of these results for the nighttime chemistry of the atmosphere were discussed. Box model calculations showed that efficient OIO formation in was necessary to explain field observations of large OIO/IO ratios.  相似文献   

20.
The reactions of Cl atoms with XCH2I (X = H, CH3, Cl, Br, I) have been studied using cavity ring-down spectroscopy in 25-125 Torr total pressure of N2 diluent at 250 K. Formation of the XCH2I-Cl adduct is the dominant channel in all reactions. The visible absorption spectrum of the XCH2I-Cl adduct was recorded at 405-632 nm. Absorption cross-sections at 435 nm are as follows (in units of 10(-18) cm2 molecule(-1)): 12 for CH3I, 21 for CH3CH2I, 3.7 for CH2ICl, 7.1 for CH2IBr, and 3.7 for CH2I2. Rate constants for the reaction of Cl with CH3I were determined from rise profiles of the CH3I-Cl adduct. k(Cl + CH3I) increases from (0.4 +/- 0.1) x 10(-11) at 25 Torr to (2.0 +/- 0.3) x 10(-11) cm3 molecule(-1) s(-1) at 125 Torr of N2 diluent. There is no discernible reaction of the CH3I-Cl adduct with 5-10 Torr of O2. Evidence for the formation of an adduct following the reaction of Cl atoms with CF3I and CH3Br was sought but not found. Absorption attributable to the formation of the XCH2I-Cl adduct following the reaction of Cl atoms with XCH2I (X = H, CH3, Br, I) was measured as a function of temperature over the range 250-320 K.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号