首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
This paper presents experimental counter-current air–water flow data on the onset of flooding and slugging, the slug propagation velocity, the predominant slug frequency and the average void fraction collected by using different size orifices installed at two locations in a horizontal pipe. For the flow conditions covered during these experiments, it was observed that there is no significant difference between the onset of flooding and the onset of slugging when an orifice is installed in the horizontal run. However, a difference was observed for the experiments carried out without orifices. Furthermore, the position of the orifice with respect to the elbow does not affect the onset of flooding and slugging. When an orifice is installed in the horizontal run, it was observed that slugs occur due to the mutual interaction (constructive interference) of two waves traveling in opposite directions. This means that a completely different mechanism seems to govern the formation of slugs in counter-current two-phase flows in horizontal partially blocked pipes. This is in contrast to that described for the slugging phenomena in co-current flow, where wave instability seems to be the principal mechanisms responsible of bridging the pipe. The mutual interaction of waves traveling in opposite directions seems to control the behaviour of the slug propagation velocity, the slug frequency and average void fraction with increasing the gas superficial velocity.  相似文献   

2.
Flow regime transition criteria are of practical importance for two-phase flow analyses at reduced gravity conditions. Here, flow regime transition criteria which take the frictional pressure loss effect into account were studied in detail. Criteria at reduced gravity conditions were developed by extending an existing model from normal gravity to reduced gravity conditions. A comparison of the newly developed flow regime transition criteria model with various experimental datasets taken at microgravity conditions showed satisfactory agreement. Sample computations of the model were performed at various gravity conditions, such as 0.196, 1.62, 3.71 and 9.81 m/s2 corresponding to micro-gravity and lunar, Martian and Earth surface gravity, respectively. It was found that the effect of gravity on bubbly–slug and slug–annular (churn) transitions in a two-phase flow system was more pronounced at low liquid flow conditions, whereas the gravity effect could be ignored at high mixture volumetric flux conditions. While for the annular flow transitions due to flow reversal and onset of droplet entrainment, higher superficial gas velocity was obtained at higher gravity level.  相似文献   

3.
Heat transfer coefficients were measured and new correlations were developed for two-phase, two-component (air and water) heat transfer in a horizontal pipe for different flow patterns. Flow patterns were observed in a transparent circular pipe using an air–water mixture. Visual identification of the flow patterns was supplemented with photographic data, and the results were plotted on the flow regime map proposed by Taitel and Dukler and agreed quite well with each other. A two-phase heat transfer experimental setup was built for this study and a total of 150 two-phase heat transfer data with different flow patterns were obtained under a uniform wall heat flux boundary condition. For these data, the superficial Reynolds number ranged from 640 to 35,500 for the liquid and from 540 to 21,200 for the gas. Our previously developed robust two-phase heat transfer correlation for a vertical pipe with modified constants predicted the horizontal pipe air–water heat transfer experimental data with very good accuracy. Overall the proposed correlations predicted the data with a mean deviation of 1.0% and an rms deviation of 12%.  相似文献   

4.
The prediction afforded by Gardner's (1977) hypothesis for the onset of slugging is shown to form an upper bound to the data of Kordyban (1977) for both the required phase velocity difference and the wave height for conditions just subcritical to those needed for slugging. Experimental data is only available for air/water flow at atmospheric pressure in ducts of rectangular cross-section. Predictions are presented for fluids with other density ratios in similar ducts and in horizontal tubes.  相似文献   

5.
IntroductionItisasuccessfulexampleinadevelopmentstoryofscienceandtechnologyformechanicsoffluidsinporousmediatocombinewithengineeringtechnology .Fieldsinfluencedbythemechanicsinvolveddevelopmentofoil_gasandgroundwaterresources,controlonseawaterintrusionandsubsidenceandgeologichazards,geotechnicalengineeringandbioengineering ,andairlineindustry[1~ 7].Aproblemonnonlinearflowinlow_permeabilityporousmediaisbutonlyabasiconeindifferentkindsofengineeringfields,butalsooneoffrontlineresearchfieldsofmod…  相似文献   

6.
This experimental study comparatively examined the two-phase flow structures, pressured drops and heat transfer performances for the cocurrent air–water slug flows in the vertical tubes with and without the spiky twisted tape insert. The two-phase flow structures in the plain and swirl tubes were imaged using the computerized high frame-rate videography with the Taylor bubble velocity measured. Superficial liquid Reynolds number (ReL) and air-to-water mass flow ratio (AW), which were respectively in the ranges of 4000–10000 and 0.003–0.02 were selected as the controlling parameters to specify the flow condition and derive the heat transfer correlations. Tube-wise averaged void fraction and Taylor bubble velocity were well correlated by the modified drift flux models for both plain and swirl tubes at the slug flow condition. A set of selected data obtained from the plain and swirl tubes was comparatively examined to highlight the impacts of the spiky twisted tape on the air–water interfacial structure and the pressure drop and heat transfer performances. Empirical heat transfer correlations that permitted the evaluation of individual and interdependent ReL and AW impacts on heat transfer in the developed flow regions of the plain and swirl tubes at the slug flow condition were derived.  相似文献   

7.
A three-dimensional two-fluid model to predict subcooled boiling flow at low pressure is presented. The model is adopted to investigate the two-phase flow and heat transfer characteristics in a heated channel. The presence of bubbles as a consequence of heating flow through a vertical rectangular channel has a significant effect on the overall pressure drop along the channel. Numerical results were compared against a series experimental data performed at various conditions – mass flux, heat flux, inlet temperature and exit pressure. Good agreement on the overall pressure drop was achieved. The onset of flow instability velocity was also accurately determined when compared against measurements. Predicted results of void fraction provided useful information towards a more fundamental understanding of the occurrence of onset of nucleate boiling, onset of significant voiding and onset of flow instability. The phenomenon of boiling onset oscillations was also predicted through the use of the two-fluid model.  相似文献   

8.
The infrared thermography technique was used to study the thermal and hydrodynamic phenomena in intermittent two-phase air–water flow in horizontal and inclined tubes at atmospheric pressure. The study was aimed at elucidating the relationship between the hydrodynamic parameters and dryout phenomena. It focuses on the empirical evaluation of the wall temperature distribution in a uniformly heated pipe. The results reveal the existence of dryout phenomena in horizontal pipe flow only. The flow parameter based on the frequency, length and velocity of elongated bubble is presented for the prediction of dryout.  相似文献   

9.
Severe slugging is a dynamic two-phase flow phenomenon with regular liquid accumulation and blow-out in flow-line riser geometries. This paper discusses the applicability of a slug tracking model on a case where hydrodynamic slug initiation in a horizontal part of the pipeline upstream the riser base affects the severe slugging cycle period. The given experimental case is from the Shell laboratories in Amsterdam: air–water flow in a 100 m long pipe (65 m horizontal and 35 m −2.54° downwards) followed by a 15 m long vertical riser.A Lagrangian slug and bubble tracking model is described. A two-fluid model is applied in the bubble region and the slug region is treated as incompressible flow, with an integral momentum equation. Slug initiation from unstable stratified flow can be captured directly by solving the two-fluid model on a fine grid (a hybrid capturing and tracking scheme). Alternatively, slug initiation can be made from sub grid models, allowing for larger grid sizes. The sub grid models are based on the two established flow regime transition criteria derived from the stability of stratified flow and from the limiting solution of the unit cell slug flow model.Sensitivity studies on hydrodynamic slug initiation models on the severe slugging characteristics are presented. No hydrodynamic slug initiation (e.g. large grid size in the capturing scheme) overestimates the severe slug period compared with the experiments. Slug capturing and sub grid initiation models both give good predictions for small grid sizes (provided the detailed inlet configuration is included in the capturing case). Good predictions are also shown for larger grid sizes (factor of 50) and sub grid initiation models.The numerical tests show that correct prediction of the severe slugging cycle is sensitive to the initiation of upstream hydrodynamic slugs, but less sensitive to the local structure of the slug flow (frequencies and lengths) in the upstream region.  相似文献   

10.
All existing proton exchange membrane (PEM) fuel cell gas flow fields have been designed on the basis of single-phase gas flow distribution. The presence of liquid water in the flow causes non-uniform gas distribution, leading to poor cell performance. This paper demonstrates that a gas flow restrictor/distributor, as is commonly used in two-phase flow to stabilize multiphase transport lines and multiphase reactors, can improve the gas flow distribution by significantly reducing gas real-distribution caused by either non-uniform water formation in parallel flow channels or flow instability associated with negative-slope pressure drop characteristic of two-phase horizontal flow systems.  相似文献   

11.
Prediction of amount of entrained droplets or entrainment fraction in annular two-phase flow is essential for the estimation of dryout condition and analysis of post dryout heat transfer in light water nuclear reactors and steam boilers. In this study, air–water and organic fluid (Freon-113) annular flow entrainment experiments have been carried out in 9.4 and 10.2 mm diameter test sections, respectively. Both the experiments covered three distinct pressure conditions and wide range of liquid and gas flow conditions. The organic fluid experiments simulated high pressure steam–water annular flow conditions. In each experiment, measurements of entrainment fraction, droplet entrainment rate and droplet deposition rate have been performed by using the liquid film extraction method. A simple, explicit and non-dimensional correlation developed by Sawant [Sawant, P.H., Ishii, M., Mori, M., 2008. Droplet entrainment correlation in vertical upward co-current annular two-phase flow. Nucl. Eng. Des. 238 (6), 1342–1352] for the prediction of entrainment fraction is further improved in this study in order to account for the existence of critical gas and liquid flow rates below which no entrainment is possible.Additionally, a new correlation is proposed for the estimation of minimum liquid film flow rate at the maximum entrainment fraction condition. The improved correlation successfully predicted the newly collected air–water and Freon-113 entrainment fraction data. Furthermore, the correlations satisfactorily compared with the air–water, helium–water and air–genklene experimental data measured by Willetts [Willetts, I.P., 1987. Non-aqueous annular two-phase flow. D.Phil. Thesis, University of Oxford]. However, comparison of the correlations with the steam–water data available in literature showed significant discrepancies. It is proposed that these discrepancies might have been caused due to the inadequacy of the liquid film extraction method used to measure the entrainment fraction or due to the change in mechanism of entrainment under high liquid flow conditions.  相似文献   

12.
Decreasing the gas flow-rate in an initially vertical upward annular dispersed pipe-flow, will eventually lead to a down-flow of liquid. The onset of this down-flow has been related in the literature to the presence of the dispersed phase and the instability of the liquid film. Here we investigate how the dispersed-phase may influence the down-flow, performing detailed PDA-measurements in a 5 cm vertical air–water annular-flow. It is shown that the dispersed-phase does not cause the liquid down-flow, but that it delays the onset of liquid down-flow. In cocurrent annular flow the dispersed phase seems to stabilise the film flow, whereas in churn-annular flow the opposite seems to be true.  相似文献   

13.
This paper is devoted to slip phenomenon between the phases that occurs in unstable two-phase water–oil flow systems in a horizontal pipe. The emphasis is placed on the relation between the slip and the real (in situ) water fraction in a flowing mixture, as well as the substitute physical properties of the whole two-phase system. The experimental data collected throughout research served for the evaluation of the accuracy of the methods of real phase fraction in a water–oil flow system in horizontal pipes as they were referred to in the bibliography. Subsequently we have suggested the author indicate a method of determination of the fraction for two-phase liquid systems like O/W, W/O and W + O. In order to establish the specific equations, the drift-flux model has been used here.  相似文献   

14.
Gas–liquid slug flow occurs over a wide range of phase flow rates and in a variety of practical applications during gas–liquid two-phase flows. The range of slug flow increases further in narrow pipes (<0.0254 m), undulated pipelines, riser tube, etc. On the other hand, the past literature shows that slug flow is rarely observed for liquid–liquid cases. In the present study, an interest was felt to investigate whether liquid–liquid slug flow occurs in situations known for excessive slugging in gas–liquid cases. For this, experiments have been performed in narrow (0.012 m ID) vertical and horizontal pipes and an undulated pipeline of 0.0254 m internal diameter where the V-shaped undulation comprises of an uphill and a downhill section between two horizontal pipes. The studies have been performed for both peak and valley orientation of the undulation. Kerosene and water have been selected as the test fluids and the optical probe technique has been used to supplement visual observations especially at higher flow rates. The studies have revealed the existence of the slug flow pattern over a wide range of phase flow rates in all the three geometries. Interestingly, it has been noted that the introduction of an undulation induces flow patterns which bear a closer resemblance to gas–liquid flows as compared to liquid–liquid flows through a horizontal pipe of 0.0254 m diameter.  相似文献   

15.
Three 0.5% cold-leg small-break loss-of-coolant accident (SBLOCA) experiment were conducted at the ROSA-IV Large Scale Test Facility (LSTF) to investigate the effects of break orientation on system thermal-hydraulic responses. In these three experiments, the break hole was located at the side, bottom, and top of the horizontal cold leg, respectively. Although the key phenomena observed in the three experiments were basically the same, the break flow rate was affected by the break orientation when phase stratification occured in the cold leg; the break flow rate was largest for the side break and smallest for the top break. The RELAP5/MOD2 code failed to predict the difference in the break flow rate observed in the experiments. Modification to the break flow calculation models, for both subcooled and two-phase flow discharge conditions, resulted in good agreement between data and predictions.  相似文献   

16.
One of the flow regimes occurring in horizontal two-phase flows is characterized by periodic large waves “surging” along the tube. This flow, called “slug” flow, has been frequently observed in low and high pressure gas liquid systems, but it has been noticed that slugging is absent in certain liquid-liquid two-phase systems. A method is developed giving the necessary conditions for the presence of slug flow. This method quantitatively explains the observed absence of slugging in certain liquid-liquid flows.  相似文献   

17.
The two-phase flow in the corrugated gap created by two adjacent plates of a plate heat exchanger was investigated experimentally. One setup consisting of a transparent corrugated gap was used to visualize the two-phase flow pattern and study the local phenomena of phase distribution, pressure drop and void fraction. Saturated two-phase R365mfc and an air-water mixture were used as working fluids.In a second experimental setup, the heat transfer coefficients and the pressure drop inside an industrial plate heat exchanger during the condensation process of R134a are determined. Both experimental setups use the same type of plates, so the experimental results can be connected and a flow pattern model for the condensation in plate heat exchangers can be derived. In this work the results of the flow pattern visualization, the two-phase pressure drop in the corrugated gap and the void fraction analysis by measurement of the electrical capacity are presented. A new pressure drop correlation is derived, which takes into account different flow patterns, that appear during condensation. The mean deviation of the presented pressure drop model compared to the experimental data and data from other experimental works is 18.9%. 81.7% of the calculated pressure drop lies within ±30% compared to the experimental data.  相似文献   

18.
Fluidelastic instability is a key issue in steam generator tube bundles subjected to cross-flow. The extension to two-phase flow of the existing theoretical models, developed and tested mostly for single phase flow, is investigated in this paper. The time delay is one of the key parameter for modeling fluidelastic instability, especially the damping controlled mechanism. The direct measurement of the time delay between the tube motion and the fluid force faces certain difficulties in two-phase flow since the high turbulence due to the interaction of the two components of the flow may increase the randomness of the measured force. To overcome this difficulty, an innovative method for extracting the time delay inherent to the quasi-steady model for fluidelastic instability is proposed in this study.Firstly, experimental measurements of unsteady and quasi-static fluid forces (in the lift direction) acting on a tube subjected to air–water two-phase flow were conducted. The unsteady fluid forces were measured by exciting the tube using a linear motor. These forces were measured for a wide range of void fractions, flow velocities and excitation frequencies. The experimental results showed that the unsteady fluid forces could be represented as single valued function of the reduced flow velocity. It was also found that for a given frequency, the unsteady fluid force phase was weakly dependent on the void fraction for the range of flow velocities considered.The time delay was determined by equating the unsteady fluid forces with the quasi-steady forces. The results given by this innovative method of measuring the time delay in two-phase flow were consistent with theoretical expectations. The time delay could be expressed as a linear function of the convection time and the time delay parameter was determined for void fractions ranging from 60% to 90%.  相似文献   

19.
This paper presents an application of the wavelet analysis technique for two-phase flow pattern identification by using the void fraction signals obtained from a multi-channel Impedance Void Meter (IVM) in a vertical-upward air–water flow. A new method for the objective discrimination of the two-phase flow pattern has been developed to provide information regarding the local energy of void fraction signals at a given scale on the joint time–frequency diagram. The void signals are processed with Continuous Wavelet Transform (CWT) to get the local wavelet energy coefficients map on the time–frequency diagram. The effective local wavelet energy and the effective scale are then calculated. Then the criteria for flow pattern identification are, finally, obtained. A series of void fraction measurements were conducted over a wide range of air–water vertical-upward flow condition to provide an extensive database to cover several types of flow patterns. The results show that the proposed method has a high precision for characterizing different flow regimes in two-phase flow, and is considerably more promising for the online recognition of two-phase flow patterns due to the short time of data processing.  相似文献   

20.
A simultaneous visualization and measurement study on some specific points on demand curves, such as onset of nucleate boiling (ONB), onset of significant void (OSV), onset of flow instability (OFI), and two-phase flow patterns in a single-side heated narrow rectangular channel, having a width of 40 mm and a gap of 3 mm, was carried out. New experimental approaches were adopted to identify OSV and OFI in a narrow rectangular channel. Under experimental conditions, the ONB could be predicted well by the Sato and Matsumura model. The OSV model of Bowring can reasonably predict the OSV if the single-side heated condition is considered. The OFI was close to the saturated boiling point and could be described accurately by Kennedy’s correlation. The two-phase flow patterns observed in this experiment could be classified into bubbly, churn, and annular flow. Slug flow was never observed. The OFI always occurred when the bubbles at the channel exit began to coalesce, which corresponded to the beginning of the bubbly–churn transition in flow patterns. Finally, the evolution of specific points and flow pattern transitions were examined in a single-side heated narrow rectangular channel.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号