首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A standard quadratic optimization problem (QP) consists of finding (global) maximizers of a quadratic form over the standard simplex. Standard QPs arise quite naturally in copositivity-based procedures which enable an escape from local solutions. Furthermore, several important applications yield optimization problems which can be cast into a standard QP in a straightforward way. As an example, a new continuous reformulation of the maximum weight clique problem in undirected graphs is presented which considerably improves previous attacks both as numerical stability and interpretation of the results are concerned. Apparently also for the first time, an equivalence between standard QPs and QPs on the positive orthant is established. Also, a recently presented global optimization procedure (GENF - genetical engineering via negative fitness) is shortly reviewed.  相似文献   

2.
In engineering plasticity, the behavior of a structure (e.g., a frame or truss) under a variety of loading conditions is studied. Two primary types of analysis are generally conducted. Limit analysis determines the rigid plastic collapse load for a structure and can be formulated as a linear program (LP). Deformation analysis at plastic collapse can be formulated as a quadratic program (QP). The constraints of the two optimization problems are closely related. This paper presents a specialization of the projection method for linear programming for the limit-load analysis problem. The algorithm takes advantage of the relationship between the LP constraints and QP constraints to provide advantageous starting data for the projection method applied to the QP problem. An important feature of the method is that it avoids problems of apparent infeasibility due to roundoff errors. Experimental results are given for two medium-sized problems.This work was supported by the National Research Council of Canada under Research Grant No. A8189.  相似文献   

3.
The paper describes a method for computing a lower bound of the global minimum of an indefinite quadratic form over a simplex. The bound is derived by computing an underestimator of the convex envelope by solving a semidefinite program (SDP). This results in a convex quadratic program (QP). It is shown that the optimal value of the QP is a lower bound of the optimal value of the original problem. Since there exist fast (polynomial time) algorithms for solving SDP's and QP's the bound can be computed in reasonable time. Numerical experiments indicate that the relative error of the bound is about 10 percent for problems up to 20 variables, which is much better than a known SDP bound.  相似文献   

4.
We propose an exterior Newton method for strictly convex quadratic programming (QP) problems. This method is based on a dual formulation: a sequence of points is generated which monotonically decreases the dual objective function. We show that the generated sequence converges globally and quadratically to the solution (if the QP is feasible and certain nondegeneracy assumptions are satisfied). Measures for detecting infeasibility are provided. The major computation in each iteration is to solve a KKT-like system. Therefore, given an effective symmetric sparse linear solver, the proposed method is suitable for large sparse problems. Preliminary numerical results are reported.  相似文献   

5.
A technique for the resolution of degeneracy in an Active Set Method for Quadratic Programming is described. The approach generalises Fletcher's method [2] which applies to the LP case. The method is described in terms of an LCP tableau, which is seen to provide useful insights. It is shown that the degeneracy procedure only needs to operate when the degenerate constraints are linearly dependent on those in the active set. No significant overheads are incurred by the degeneracy procedure. It is readily implemented in a null space format, and no complications in the matrix algebra are introduced.The guarantees of termination provided by [2], extending in particular to the case where round-off error is present, are preserved in the QP case. It is argued that the technique gives stronger guarantees than are available with other popular methods such as Wolfe's method [11] or the method of Goldfarb and Idnani [7].Presented at the 14th International Symposium on Mathematical Programming, Amsterdam, August 5–9, 1991.  相似文献   

6.
给出并研究了一种数值算法(简称94LVI算法),用于求解带等式和双端约束的二次规划问题. 这类带约束的二次规划问题首先被转换为线性变分不等式问题,该问题等价于分段线性投影等式.接着使用94LVI算法求解上述分段线性投影等式,从而得到QP问题的最优解. 进一步给出了94LVI算法的全局收敛性证明. 94LVI算法与经典有效集算法的对比实验结果证实了给出的94LVI算法在求解二次规划问题上的高效性与优越性.  相似文献   

7.
The long-term planning of electricity generation in a liberalised market using the Bloom and Gallant model can be posed as a quadratic programming (QP) problem with an exponential number of linear inequality constraints called load-matching constraints (LMCs) and several other linear non-LMCs. Direct solution methods are inefficient at handling such problems and a heuristic procedure has been devised to generate only those LMCs that are likely to be active at the optimiser. The problem is then solved as a finite succession of QP problems with an increasing, though still limited, number of LMCs, which can be solved efficiently using a direct method, as would be the case with a QP interior-point algorithm. Warm starting between successive QP solutions helps then in reducing the number of iterations necessary to reach the optimiser.  相似文献   

8.
A Modified SQP Method and Its Global Convergence   总被引:6,自引:0,他引:6  
The sequential quadratic programming method developed by Wilson, Han andPowell may fail if the quadratic programming subproblems become infeasibleor if the associated sequence of search directions is unbounded. In [1], Hanand Burke give a modification to this method wherein the QP subproblem isaltered in a way which guarantees that the associated constraint region isnonempty and for which a robust convergence theory is established. In thispaper, we give a modification to the QP subproblem and provide a modifiedSQP method. Under some conditions, we prove that the algorithm eitherterminates at a Kuhn–Tucker point within finite steps or generates aninfinite sequence whose every cluster is a Kuhn–Tucker point.Finally, we give some numerical examples.  相似文献   

9.
Given an optimal solution for a convex quadratic programming (QP) problem, the optimal partition of the QP can be computed by solving a pair of linear or QP problems for which nearly optimal solutions are known.  相似文献   

10.
In this paper, we shall give a new method for computing the weighted generalized inversion of partitioned matrices, i.e. solve the weighted problems with the aid of the unweighted ones, which is quite efficient and convenient for either dealing with the inconsistent equations or computing the generalized inverses, now we discuss some problems about the latter. The theorem I below is an extension of the main result in [2], especially, the proof is quite succinct here.  相似文献   

11.
A QP Free Feasible Method   总被引:22,自引:0,他引:22  
In [12], a QP free feasible method was proposed for the minimization of a smooth function subject to smooth inequality constraints. This method is based on the solutions of linear systems of equations, the reformulation of the KKT optimality conditions by using the Fischer-Burmeister NCP function. This method ensures the feasibility of all iterations. In this paper, we modify the method in [12] slightly to obtain the local convergence under some weaker conditions. In particular, this method is implementable and globally convergent without assuming the linear independence of the gradients of active constrained functions and the uniformly positive definiteness of the submatrix obtained by the Newton or Quasi Newton methods. We also prove that the method has superlinear convergence rate under some mild conditions. Some preliminary numerical results indicate that this new QP free feasible method is quite promising.  相似文献   

12.
This article presents algorithms for computing optima in decision trees with imprecise probabilities and utilities. In tree models involving uncertainty expressed as intervals and/or relations, it is necessary for the evaluation to compute the upper and lower bounds of the expected values. Already in its simplest form, computing a maximum of expectancies leads to quadratic programming (QP) problems. Unfortunately, standard optimization methods based on QP (and BLP – bilinear programming) are too slow for the evaluation of decision trees in computer tools with interactive response times. Needless to say, the problems with computational complexity are even more emphasized in multi-linear programming (MLP) problems arising from multi-level decision trees. Since standard techniques are not particularly useful for these purposes, other, non-standard algorithms must be used. The algorithms presented here enable user interaction in decision tools and are equally applicable to all multi-linear programming problems sharing the same structure as a decision tree.  相似文献   

13.
The nonlinear complementarity problem can be reformulated as a nonlinear programming. For solving nonlinear programming, sequential quadratic programming (SQP) type method is very effective. But the QP subproblem may be inconsistent. In this paper, we propose a kind nonmonotone filter method in which the QP subproblem is consistent. By means of nonmonotone filter, this method has no demand on the penalty parameter which is difficult to obtain. Moreover, the restoration phase is not needed any more. Under reasonable conditions, we obtain the global convergence of the algorithm. Some numerical results are presented.  相似文献   

14.
We present a method which when applied to certain non-convex QP will locatethe globalminimum, all isolated local minima and some of the non-isolated localminima. The method proceeds by formulating a (multi) parametric convex QP interms ofthe data of the given non-convex QP. Based on the solution of the parametricQP,an unconstrained minimization problem is formulated. This problem ispiece-wisequadratic. A key result is that the isolated local minimizers (including theglobalminimizer) of the original non-convex problem are in one-to-one correspondencewiththose of the derived unconstrained problem.The theory is illustrated with several numerical examples. A numericalprocedure isdeveloped for a special class of non-convex QP's. It is applied to a problemfrom theliterature and verifies a known global optimum and in addition, locates apreviously unknown local minimum.  相似文献   

15.
In this paper, a class of general nonlinear programming problems with inequality and equality constraints is discussed. Firstly, the original problem is transformed into an associated simpler equivalent problem with only inequality constraints. Then, inspired by the ideals of the sequential quadratic programming (SQP) method and the method of system of linear equations (SLE), a new type of SQP algorithm for solving the original problem is proposed. At each iteration, the search direction is generated by the combination of two directions, which are obtained by solving an always feasible quadratic programming (QP) subproblem and a SLE, respectively. Moreover, in order to overcome the Maratos effect, the higher-order correction direction is obtained by solving another SLE. The two SLEs have the same coefficient matrices, and we only need to solve the one of them after a finite number of iterations. By a new line search technique, the proposed algorithm possesses global and superlinear convergence under some suitable assumptions without the strict complementarity. Finally, some comparative numerical results are reported to show that the proposed algorithm is effective and promising.  相似文献   

16.
Model predictive control (MPC) is an optimization-based control framework which is attractive to industry both because it can be practically implemented and it can deal with constraints directly. One of the main drawbacks of MPC is that large MPC horizon times can cause requirements of excessive computational time to solve the quadratic programming (QP) minimization which occurs in the calculation of the controller at each sampling interval. This motivates the study of finding faster ways for computing the QP problem associated with MPC. In this paper, a new nonfeasible active set method is proposed for solving the QP optimization problem that occurs in MPC. This method has the feature that it is typically an order of magnitude faster than traditional methods. This work has been supported by the Canadian NSERC under Grant A4396.  相似文献   

17.
Multicategory Classification by Support Vector Machines   总被引:8,自引:0,他引:8  
We examine the problem of how to discriminate between objects of three or more classes. Specifically, we investigate how two-class discrimination methods can be extended to the multiclass case. We show how the linear programming (LP) approaches based on the work of Mangasarian and quadratic programming (QP) approaches based on Vapnik's Support Vector Machine (SVM) can be combined to yield two new approaches to the multiclass problem. In LP multiclass discrimination, a single linear program is used to construct a piecewise-linear classification function. In our proposed multiclass SVM method, a single quadratic program is used to construct a piecewise-nonlinear classification function. Each piece of this function can take the form of a polynomial, a radial basis function, or even a neural network. For the k > 2-class problems, the SVM method as originally proposed required the construction of a two-class SVM to separate each class from the remaining classes. Similarily, k two-class linear programs can be used for the multiclass problem. We performed an empirical study of the original LP method, the proposed k LP method, the proposed single QP method and the original k QP methods. We discuss the advantages and disadvantages of each approach.  相似文献   

18.
We present a decomposition method for indefinite quadratic programming problems having n variables and m linear constraints. The given problem is decomposed into at most m QP subproblems each having m linear constraints and n-1 variables. All global minima, all isolated local minima and some of the non-isolated local minima for the given problem are obtained from those of the lower dimensional subproblems. One way to continue solving the given problem is to apply the decomposition method again to the subproblems and repeatedly doing so until subproblems of dimension 1 are produced and these can be solved directly. A technique to reduce the potentially large number of subproblems is formulated.  相似文献   

19.
In this paper we describe a new version of a sequential equality constrained quadratic programming method for general nonlinear programs with mixed equality and inequality constraints. Compared with an older version [P. Spellucci, Han's method without solving QP, in: A. Auslender, W. Oettli, J. Stoer (Eds), Optimization and Optimal Control, Lecture Notes in Control and Information Sciences, vol. 30, Springer, Berlin, 1981, pp. 123–141.] it is much simpler to implement and allows any kind of changes of the working set in every step. Our method relies on a strong regularity condition. As far as it is applicable the new approach is superior to conventional SQP-methods, as demonstrated by extensive numcrical tests. © 1998 The Mathematical Programming Society, Inc. Published by Elsevier Science B.V.  相似文献   

20.
Techniques for transforming convex quadratic programs (QPs) into monotone linear complementarity problems (LCPs) and vice versa are well known. We describe a class of LCPs for which a reduced QP formulation – one that has fewer constraints than the “standard” QP formulation – is available. We mention several instances of this class, including the known case in which the coefficient matrix in the LCP is symmetric. Received: May 2000 / Accepted: February 22, 2001?Published online April 12, 2001  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号