首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Fluorescent photosensitizers (PSs) often encounter low singlet oxygen (1O2) quantum yields and fluorescence quenching in the aggregated state, mainly involving the intersystem crossing process. Herein, we successfully realize maximizing 1O2 quantum yields of fluorescent PSs through promoting radical-pair intersystem crossing (RP-ISC), which serves as a molecular symmetry-controlling strategy of donor–acceptor (D–A) motifs. The symmetric quadrupolar A–D–A molecule PTP exhibits an excellent 1O2 quantum yield of 97.0% with bright near-infrared fluorescence in the aggregated state. Theoretical and ultrafast spectroscopic studies suggested that the RP-ISC mechanism dominated the formation of the triplet for PTP, where effective charge separation and an ultralow singlet–triplet energy gap (0.01 eV) enhanced the ISC process to maximize 1O2 generation. Furthermore, in vitro and in vivo experiments demonstrated the dual function of PTP as a fluorescent imaging agent and an anti-cancer therapeutic, with promising potential applications in both diagnosis and theranostics.

Maximizing singlet oxygen quantum yields of a fluorescent photosensitizer for realizing approximately 100% utilization of excitons by precisely controlling the molecular symmetry.  相似文献   

2.
Photophysical properties are reported for a series of cyclometalated platinum and iridium complexes that can serve as photosensitizers for singlet oxygen. The complexes have the formula (C;N)(2)Ir(O;O) or (C;N)Pt(O;O) where C;N is a monoanionic cyclometalating ligand such as 2-(phenyl)pyridyl and 2-(phenyl)quinolyl, and O;O is the ancillary ligand acetylacetonate (acac) or dipivaloylmethane (dpm). Also examined were a series of (N;N)PtMe(2) complexes where N;N is a diimine such as 2,2'-bipyridyl. In general, the cyclometalated complexes are excellent photosensitizers for the production of singlet oxygen, while the (N;N)PtMe(2) complexes were ineffective at this reaction. Quantum yields of singlet oxygen production range from 0.9-1.0 for the cyclometalated Pt complexes and 0.5-0.9 for Ir complexes. Luminescence quenching and singlet oxygen formation of the Ir complexes occurs from a combination of electron and energy transfer processes, whereas the Pt complexes only react by energy transfer. For Ir complexes with low emission energy, physical deactivation of the triplet excited state becomes competitive with energy transfer to ground state dioxygen. The rates of singlet oxygen quenching for the complexes presented here are in the range 6 x 10(6)-2 x 10(7) M(-1) s(-1) for Pt complexes and 2 x 10(5)-2 x 10(7) M(-1) s(-1) for Ir complexes, respectively. Differences in the efficiency of both forming and quenching singlet oxygen between the Ir and Pt cyclometalates are believed to come about from the more exposed coordination geometry in the latter species.  相似文献   

3.
Three novel classes of porphyrazine-like structures were synthesized to form modular structures in which lipophilicity and water solubility can be tuned. Subtle modification of solubility is an important criterion in selecting a compound for biological photosensitization. The general structure takes the form H2[pz(AnB4-n)], where the core is a porphyrazine (pz) group, A is a pyrrole ring with two sulfide linkages (SR moieties) and B is a pyrrole fused with a 4,7-bis(isopropyloxy)benzo group, with n=4, 3 and 2. These molecules possess their longest wavelength absorption band between 700 and 810 nm, hence laser beams of higher tissue penetration depth could be used to illuminate them in photodynamic therapy (PDT). Armed with absorption bands in the far-red and near-infrared (near-IR), and a capability to tune the solubility, these molecules could make for better sensitizers because of optimized uptake by lipidic membranes and better optical properties. We tested several derivatives of the A4, A3B and A2B2 structures for their singlet oxygen quantum yields in methanol and in liposomes, using 9,10-dimethyl anthracene (DMA) as a singlet oxygen target. Singlet oxygen quantum yields in liposomes ranged from 0.01 to 0.44, with the A2B2 group showing the most promise. In the binding assay to find the equilibrium binding constant, Kb, we detected fluorescence changes due to a change in environment. Peripheral long-chain moieties (the R group in the SR moieties) dominate lipid binding. These moieties range in the hydrophobicity that they induce from C8H17 and benzene, which rendered the molecule totally insoluble in water, to polyethylene glycol (PEG) and carboxylate groups, which imparted water solubility. Each molecule had between 4 and 8 such identical chains. Chains bearing an ether or ester link resulted in measurable equilibrium constants, with a higher Kb for ether substituents. Results for Kb ranged from 0.23 to 26.52 (mg mL(-1))(-1). A delicate balance exists between water solubility and good partitioning to membranes. In general, a higher oxygen-to-carbon ratio in the chains improves binding. Fewer chains and a centrally coordinated zinc ion further improve binding and singlet oxygen production.  相似文献   

4.
Helianthrones 2-4 are a new class of synthetic photosensitizers, which have a molecular skeleton related to that of hypericin. We established that irradiation of heliantrones with visible light leads to the formation of semiquinone radicals and reactive oxygen species. The structures of the paramagnetic anion species produced by electron transfer were calculated on the density functional level and investigated by cyclovoltammetry, UV/vis, and EPR/ENDOR spectroscopy. As with hypericin, the pi system of the helianthrones was found to be considerably deviated from planarity, and, upon electron transfer, deprotonation in the bay region occurs. The structure of the semiquinone radicals was found to be identical in THF, DMF, and aqueous buffered solutions regardless of the means by which reduction was achieved. Semiquinone radicals can be formed via self-electron transfer between the excited state and the ground state or via electron transfer from an electron donor to the excited state of helianthrone. Therefore, the presence of an electron donor significantly enhanced the photogeneration of semiquinone and superoxide radical. The kinetic studies showed that no significant photochemical destruction of helianthrones occurred upon irradiation. Generation of superoxide and singlet oxygen upon irradiation of helianthrones was established by spin trapping techniques. This shows that both type I and type II mechanisms are of importance for the photodynamic action of these compounds.  相似文献   

5.
We have investigated the excited-state properties and singlet oxygen ((1)Delta(g)) generation mechanism in phthalocyanines (4M; M = H(2), Mg, or Zn) and in low-symmetry metal-free, magnesium, and zinc tetraazaporphyrins (TAPs), that is, monobenzo-substituted (1M), adjacently dibenzo-substituted (2AdM), oppositely dibenzo-substituted (2OpM), and tribenzo-substituted (3M) TAP derivatives, whose pi conjugated systems were altered by fusing benzo rings. The S(1)(x) and S(1)(y) states (these lowest excited singlet states are degenerate in D(4)(h) symmetry) split in the low-symmetry TAP derivatives. The excited-state energies were quantitatively determined from the electronic absorption spectra. The lowest excited triplet (T(1)(x)) energies were also determined from phosphorescence spectra, while the second lowest excited triplet (T(1)(y)) states were evaluated by using the energy splitting between the T(1)(x) and T(1)(y) states previously reported (Miwa, H.; Ishii, K.; Kobayashi, N. Chem. Eur. J. 2004, 10, 4422-4435). The singlet oxygen quantum yields (Phi(Delta)) are strongly dependent on the pi conjugated system. In particular, while the Phi(Delta) value of 2AdH(2) is smallest in our system, that of 2OpH(2), an isomer of 2AdH(2), is larger than that of 4Zn, in contrast to the heavy atom effect. The relationship between the molecular structure and Phi(Delta) values can be transformed into a relationship between the S(1)(x) --> T(1)(y) intersystem crossing rate constant (k(ISC)) and the energy difference between the S(1)(x) and T(1)(y) states (DeltaE(S)(x)(T)(y)). In each of the Zn, Mg, and metal-free compounds, the Phi(Delta)/tau(F) values (tau(F): fluorescence lifetime), which are related to the k(ISC) values, are proportional to exp(-DeltaE(S)(x)(T)(y)), indicating that singlet oxygen ((1)Delta(g)) is produced via the T(1)(y) state and that the S(1)(x) --> T(1)(y) ISC process follows the energy-gap law. From the viewpoint of photodynamic therapy, our methodology, where the Phi(Delta) value can be controlled by changing the symmetry of pi conjugated systems without heavy elements, appears useful for preparing novel photosensitizers.  相似文献   

6.
In time-resolved and spatially resolved experiments, singlet molecular oxygen, O2(a1Deltag), was created in a single nerve cell upon irradiation of a sensitizer incorporated in the cell using a focused laser beam. The singlet oxygen thus produced was detected by its infrared phosphorescence. Data obtained indicate that in both the cytoplasm and the nucleus of the cell, this reactive species is approximately 1-2 orders of magnitude longer-lived than previously believed. The data demonstrate that deactivation of singlet oxygen in the cell is dominated by interactions with the solvent not cellular constituents such as proteins. These results provide a new perspective for mechanistic studies of the role of O2(a1Deltag) in photoinduced cell death and intracellular signaling.  相似文献   

7.
Arif Da?tan  Metin Balci 《Tetrahedron》2006,62(17):4003-4010
The chemistry of two bicyclic endoperoxides, obtained by photooxygenation of 2,3-dihydro-7H-cyclohepta[1,4]dioxine and 2,3-dihydro-7H-cyclohepta[b][1,4]dioxin-7-one was investigated with the aim of synthesizing the respective tropolone derivatives. The reaction of these endoperoxides with base, thiourea and their thermolysis provided the desired tropolone derivatives in high yield. On the other hand, the thermolysis of the endoperoxide derived from 2,3-dihydro-7H-cyclohepta[b][1,4]dioxin-7-one underwent an unprecedented route and formed parent molecule and singlet oxygen instead of the expected troponoids. The formation mechanisms of all products are discussed.  相似文献   

8.
The energies of the following types of compounds are characterized by their calculated relative enthalpies: alkanes and cycloalkanes, alkenes and cycloalkenes, polyolefins and cyclic polyolefins, aromatic hydrocarbons, alcohols and phenols, ethers, peroxides, aldehides and ketones, acetals, carboxylic acids esters, and anhydrides. Stabilization energies of conjugated olefins, benzene, and furan have been estimated.  相似文献   

9.
Absolute fluorescence quantum yields are reported for the rhodamine 6G cation and the fluorescein dianion dyes in nine solvents. This information is combined with previously reported fluorescence lifetimes to deduce radiative and nonradiative decay rates. Along the alcohol series from methanol to octanol, rhodamine 6G displays an increasing radiative rate, in parallel with the square of the refractive index increase, and a slightly decreasing nonradiative rate. Fluorescein is different: the apparent radiative rate actually decreases, suggesting that the emissive species is perturbed in some fashion. For both dyes, fluorescence yields are enhanced in D2O, rising to 0.98, in parallel with a corresponding increase in lifetimes. Protonated solvents invariably give shorter lifetimes and lower quantum yields, contrary to some previous speculation. From this work and an analysis of existing literature values, more precise values have been obtained for two previously proposed absolute quantum yield standards. The yield of fluorescein in 0.1 N NaOH(aq) is 0.925+/-0.015, and for rhodamine 6G in ethanol, it is 0.950+/-0.015. In both cases, the solutions are assumed to be in the limit of low concentration, excited close to their long-wave absorption band and at room temperature but may be either air-saturated or free of oxygen.  相似文献   

10.
Measurements of pigment triplet-triplet absorption, pigment phosphorescence and photosensitized singlet oxygen luminescence were carried out on solutions containing monomeric bacteriochlorophylls (Bchl) c and d, isolated from green photosynthetic bacteria, and their magnesium-free and farnesyl-free analogs. The energies of the pigment triplet states fell in the range 1.29-1.34 eV. The triplet lifetimes in aerobic solutions were 200-250 ns; they increased to 280 +/- 70 microseconds after nitrogen purging in liquid solutions and to 0.7-2.1 ms in a solid matrix at ambient or liquid nitrogen temperatures. Rate constants for quenching of the pigment triplet state by oxygen were (2.0-2.5) x 10(9) M-1 s-1, which is close to 1/9 of the rate constant for diffusion-controlled reactions. This quenching was accompanied by singlet oxygen formation. The quantum yields for the triplet state formation and singlet oxygen production were 55-75% in air-saturated solutions. Singlet oxygen quenching by ground-state pigment molecules was observed. Quenching was the most efficient for magnesium-containing pigments, kq = (0.31-1.2) x 10(9) M-1 s-1. It is caused mainly by a physical process of singlet oxygen (1O2) deactivation. Thus, Bchl c and d and their derivatives, as well as chlorophyll and Bchl a, combine a high efficiency of singlet oxygen production with the ability to protect photochemical and photobiological systems against damage by singlet oxygen.  相似文献   

11.
Although lifetimes and quantum yields of widely used fluorophores are often largely characterized, a systematic approach providing a rationale of their photophysical behavior on a quantitative basis is still a challenging goal. Here we combine methods rooted in the time-dependent density functional theory and fluorescence lifetime imaging microscopy to accurately determine and analyze fluorescence signatures (lifetime, quantum yield, and band peaks) of several commonly used rhodamine and pyronin dyes. We show that the radiative lifetime of rhodamines can be correlated to the charge transfer from the phenyl toward the xanthene moiety occurring upon the S(0) ← S(1) de-excitation, and to the xanthene/phenyl relative orientation assumed in the S(1) minimum structure, which in turn is variable upon the amino and the phenyl substituents. These findings encourage the synergy of experiment and theory as unique tool to design finely tuned fluorescent probes, such those conceived for modern optical sensors.  相似文献   

12.
Dipyridamole (DIP) is known for its vasodilating and antiplatelet activity, exhibiting also a potent antioxidant effect, strongly inhibiting lipid peroxidation. This effect has been studied in mitochondria and a correlation between the DIP derivatives' structure, the ability to bind to micelles and biological activity has been suggested. In the present work, the quenching of singlet molecular oxygen, O(2)((1)Delta(g)), by DIP and RA47 and RA25 derivatives was analyzed in acetonitrile (ACN) and aqueous acid solutions. Laser flash photolysis excitation of methylene blue (MB) was made at 532 nm and monomol light emission of O(2)((1)Delta(g)) was monitored at 1270 nm. Bimolecular quenching constants in ACN are consistent with an efficient physical quenching, presenting values a bit lower than the diffusion limit (k(t) = 3.4-6.8 x 10(8) M(-1 )s(-1)). The quenching process probably occurs via reversible charge transfer with the formation of an exciplex. Calculation of DeltaG(et) associated with O(2)((1)Delta(g)) quenching corroborates with uncompleted electron transfer. In aqueous acid solutions (pH = 3.0), the k(t) values for DIP and derivatives are 20-fold smaller when compared with ACN. The electrochemical properties of DIP in ACN are characterized by two consecutive one-electron processes with half-wave oxidation potentials of 0.30 and 0.67 V vs saturated calomel electrode (SCE). However, in an aqueous acid medium, a single oxidation wave is observed involving a two-electron process (0.80 V vs SCE). Therefore, O(2)((1)Delta(g)) quenching is consistent with electrochemical data.  相似文献   

13.
Molecular electron densities are generated at B3LYP/6-311+G(2d,p)//HF/6-31G(d) level for 57 molecules, including one conformation of each naturally occurring amino acid and smaller derived molecules. The electron densities are partitioned into atomic fragments according to the approach of quantum chemical topology (QCT). A set of 547 unique topological atoms is obtained, containing 421 hydrogens, 63 oxygens, 57 nitrogens and 6 sulfurs. Each atom is described by seven properties: volume, kinetic energy, monopole, dipole, quadrupole, octupole and hexadecapole moment. Cluster analysis groups atoms into atom types based on their similarity expressed in the discrete 7D space of atomic properties. Using a separation criterion we distinguish seven hydrogen, six oxygen, two nitrogen and six sulfur atom types.  相似文献   

14.
The oxidations of 1,2-polybutadiene by molecular oxygen, singlet oxygen, atomic oxygen and ozone have been studied using u.v. and i.r. spectroscopic methods. Some possible implications of the results of oxidation in the presence of singlet oxygen (parallel free radical oxidation) and atomic oxygen (formation of NO2 and its reaction with polymer) are discussed. Crosslinking was observed during all types of oxidation. A new mechanism involving formation of free radicals has been considered in detail. During ozonization of 1,2-polybutadiene, formation of formaldehyde and formic acid were detected. An ozonization mechanism has been proposed.  相似文献   

15.
The physicochemical characteristics of a nonviral gene delivery system will govern its functional bioactivity; however, empiricism dominates the literature in this field, and a significant deficiency of quantitative investigation and evaluation of nonviral gene delivery vehicles remains. Herein, we derive a physical model and experimental method to quantitatively determine the binding constants between a model polycationic nonviral gene delivery vehicle poly-L-histidine (PLH) and calf thymus DNA. The approach has utility to a variety of systems and is not limited to the described polymer model. The interaction of PLH with DNA was monitored by fluorescence quenching of an ethidium bromide probe in the pH range 4 to 8. The interaction increased with pH decrease with the most pronounced change between pH 6 and 7. The obtained pH-dependence of fraction of salt bonds formed between PLH and DNA was used to estimate pK(a) of PLH in the presence of DNA, which equaled 6.24. The interaction of PLH with DNA in the presence of added synthetic polyanions was studied by the same approach and found to be controlled by pH, nature of the charge groups of the polyanion, and its degree of polymerization. In the mixture with sodium poly(styrenesulfonate) the interaction was negligible in the whole studied pH range, whereas in the mixtures with sodium poly(acrylate) (PA) or sodium poly(methacrylate), DNA was able to compete effectively for the binding with PLH. For PA samples with degree of polymerization higher than degree of polymerization of PLH, DP(PA) > DP(PLH), the fraction of polycation bound to DNA was constant regardless of DP(PA.) In contrast, at DP(PA) < DP(PLH), a pronounced increase in the bound fraction was observed. It substantiates the notion that the binding energy of two polymers is mainly controlled by the DP of the shorter component of polyelectrolyte complex. The data on PLH distribution between DNA and added polyanion with different values of DP were treated according to the developed procedure to yield the effective binding constants of PLH with DNA and polyanion-competitor, calculated both per mole of interacting units K(1) and mole of interacting chains K(n). In all cases, K(1) had similar numerical values reflecting common type of interaction stabilizing the complexes, i.e., electrostatics. Slight variation of K(1) yielded in drastic changes in K(n) and alteration of dominance of PLH interaction with DNA or synthetic polyanion. The results of the study can have a high impact in deriving the correlation between the binding constant of a polycation to DNA and its ability to serve as gene delivery vehicle.  相似文献   

16.
Time-dependent photoluminescence (PL) enhancement, blue shift, and photobleach were observed from the thiol-capped CdTe quantum dots (QDs) ingested in mouse myoblast cells and human primary liver cancer cells. It was revealed that the PL blue shift resulted from the photooxidation of the QD core by singlet oxygen molecules formed on the QD core surface.  相似文献   

17.
The lifetimes of 9,10-diphenylanthracene in dilute solutions of cyclohexane and benzene at 25°C have been found to be 7.58 ± 0.04 and 6.95 ± 0.04 ns respectively. Measurements of the relative quantum yields show that the dependence on the solvent is caused by an increased probability for non-radiative decay in benzene compared with cyclohexane. This behaviour is shown to partly reconcile previous conflicting data on the radiative properties of this molecule.  相似文献   

18.
Coating of azobenzene chromophore with multivalent sugar ligands has been accomplished. Such sugar coating allows the study of the isomerization properties of this chromophore in aqueous solutions. The predominantly cis-isomer-containing photostationary state (PS) mixture of these azobenzene derivatives is found to be stable for hours. The rate constants for their isomerization, as well as the Arrhenius activation energies, are determined experimentally. An assessment of the lectin binding properties of the lactoside bearing isomeric azobenzene derivatives, by isothermal calorimetric methods, reveals the existence of an unusual cooperativity in their binding to lectin peanut agglutinin. Thermodynamic parameters evaluated for the trans and the PS mixture are discussed, in detail, for the lactoside bearing bivalent azobenzene derivative.  相似文献   

19.
?engül Dilem Yard?mc? 《Tetrahedron》2006,62(46):10633-10638
The photooxygenation of the 1-methyl-, 2,3-dimethyl-, and 1,4-dimethylcyclohexa-1,4-dienes, which are readily available through Birch reduction, yielded the corresponding ene-products. The formed endocyclic dienes were trapped by the addition of singlet oxygen to give the corresponding bicyclic endoperoxy hydroperoxides. In the case of 1-methylcyclohexa-1,4-diene and 1,4-dimethylcyclohexa-1,4,-diene, the cis-effect determined the product distribution. Photooxygenation of 2,3-dimethylcyclohexa-1,4-dienes gave mainly exocyclic olefin, which was attributed to the lowered rotational barrier of the methyl group and increased reactivity of the methyl groups.  相似文献   

20.
Two new derivatives of galvinoxyl (1), a perdeutered (2) and an adamantyl-analog (3) for potential applications as spin probes were synthesized. The synthesis with deuterated educts yielded 2 with 98% D. It exhibited an 18-line EPR spectrum in octanol with narrow peak-to-peak linewidth. The EPR spectrum of 3 was very similar to galvinoxyl, but with differences in the linewidth due to unresolved long-range couplings with adamantyl-protons. Compound 2 showed a higher response to oxygen (4.8 μT/% O2) than 1 (2.8 μT/% O2). The coupling pattern of 2 allowed the determination of oxygen at low levels (0–6%) by a new type of analysis of the EPR pattern. The stability of the radicals strongly depended on the amount of hydrogalvinoxyl, a by-product of the galvinoxyl synthesis, and the solvent type. A molecular mechanism for the stabilization by hydrogalvinoxyl and the influence of solvent type is proposed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号