首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 281 毫秒
1.
Zusammenfassung Es wurden die Enthalpien der Reaktionen von AsCl3, AsBr3, AsJ3, SbCl3, SbBr3 und SbJ3 mit Tributylphosphat, N,N-Dimethylacetamid und Hexamethylphosphorsäuretriamid bestimmt. Das Verhalten der Addukte bei Gegenwart eines Überschusses der Donoren wird beschrieben.
Acceptor properties of AsCl3, AsBr3, AsI3, SbCl3, SbBr3, and SbI3
The enthalpies of the reactions of AsCl3, AsBr3, AsI3, SbCl3, SbBr3 and SbI3 with tributylphosphate, N,N-dimethylacetamide and hexamethylphosphoric acid triamide were measured. The behavior of the adducts in the presence of excess donor molecules is described.


Mit 5 Abbildungen  相似文献   

2.
The influence of the number of 3, 3, 3-trifluoropropyl(methyl)siloxane links (Φ/Φ) in the cyclotetrasiloxanes ΦmD4-m, where D represents the dimethylsiloxane link and m=0–4, on the rearrangement of these compounds in acetone solution under the action of sodium siloxanolate has been studied. The rearrangement takes place with the formation of a linear polysiloxane the degradation of which yields, in addition to the initial ring, cyclosiloxanes with a different structure. The rate of rearrangement of ΦmD4-m and of the formation of a linear polysiloxane rises with an increase in m from 0 to 3. The equilibrium concentration of the linear polysiloxane formed from ΦmD4-m is inversely proportional to m. Results have been obtained on the kinetics of the formation of the cyclosiloxanes ΦmDn, where m=0–5, n=0–5, and m+n=3–6, in the rearrangement of the rings ΦD3, Φ2D2, Φ3D, and Φ4. The reactivity of the siloxane links rises in the sequence ~ (CH3)2Si-O-Si(CH3)2 ~<~ (CF3CH2CH2)-(CH3) Si-O-Si(CH3)2 ~<(CF3CH2CH2) (CH3)Si-O-Si(CH3) (CH2CH2CF3) ~. Because of the negative inductive effect transferred through the siloxane links, the 3, 3, 3-trifluoropropyl groups strongly activate the siloxane ring with respect to nucleophiiic reagents.  相似文献   

3.
Five new quaternary chalcogenides of the 1113 family, namely BaAgTbS3, BaCuGdTe3, BaCuTbTe3, BaAgTbTe3, and CsAgUTe3, were synthesized by the reactions of the elements at 1173–1273 K. For CsAgUTe3 CsCl flux was used. Their crystal structures were determined by single‐crystal X‐ray diffraction studies. The sulfide BaAgTbS3 crystallizes in the BaAgErS3 structure type in the monoclinic space group C3,2hC2/m, whereas the tellurides BaCuGdTe3, BaCuTbTe3, BaAgTbTe3, and CsAgUTe3 crystallize in the KCuZrS3 structure type in the orthorhombic space group D1,27,hCmcm. The BaAgTbS3 structure consists of edge‐sharing [TbS69–] octahedra and [AgS59–] trigonal pyramids. The connectivity of these polyhedra creates channels that are occupied by Ba atoms. The telluride structure features 2[MLnTe32–] layers for BaCuGdTe3, BaCuTbTe3, BaAgTbTe3, and 2[AgUTe31–] layers for CsAgUTe3. These layers comprise [MTe4] tetrahedra and [LnTe6] or [UTe6] octahedra. Ba or Cs atoms separate these layers. As there are no short Q ··· Q (Q = S or Te) interactions these compounds achieve charge balance as Ba2+M+Ln3+(Q2–)3 (Q = S and Te) and Cs+Ag+U4+(Te2–)3.  相似文献   

4.
The influence of the number of 3, 3, 3-trifluoropropyl(methyl)siloxane links (/) in the cyclotetrasiloxanes mD4-m, where D represents the dimethylsiloxane link and m=0–4, on the rearrangement of these compounds in acetone solution under the action of sodium siloxanolate has been studied. The rearrangement takes place with the formation of a linear polysiloxane the degradation of which yields, in addition to the initial ring, cyclosiloxanes with a different structure. The rate of rearrangement of mD4-m and of the formation of a linear polysiloxane rises with an increase in m from 0 to 3. The equilibrium concentration of the linear polysiloxane formed from mD4-m is inversely proportional to m. Results have been obtained on the kinetics of the formation of the cyclosiloxanes mDn, where m=0–5, n=0–5, and m+n=3–6, in the rearrangement of the rings D3, 2D2, 3D, and 4. The reactivity of the siloxane links rises in the sequence (CH3)2Si-O-Si(CH3)2 < (CF3CH2CH2)-(CH3) Si-O-Si(CH3)2 <(CF3CH2CH2) (CH3)Si-O-Si(CH3) (CH2CH2CF3) . Because of the negative inductive effect transferred through the siloxane links, the 3, 3, 3-trifluoropropyl groups strongly activate the siloxane ring with respect to nucleophiiic reagents.For part I, see [3].  相似文献   

5.
The catalytic rearrangement of the cyclopentasiloxanes ΦmD5-m, where Φ represents a 3, 3, 3-trifluoropropyl(methyl)siloxane link and D a dimethylsiloxane link, and m=2–5 has been studied by the method described previously [1]. The rate of rearrangement and the rate of formation of a linear polysiloxane rise with an increase in m from 2 to 4. The equilibrium concentration of the linear polysiloxane formed from ΦmD5-m and from ΦmD4-m (m=0–4) [1] is inversely proportional to the molar fraction of Φ links in the ring and rises with an increase in the total concentration of siloxane links in solution. Results have been obtained on the kinetics of the formation of the cyclosiloxanes ΦmDn (where m=0–5, n=0–5, and m+n=3-6) during the rearrangement of the cyclopentasiloxanes ΦmD5-m. It has been established that at equilibrium a mixture of cyclosiloxanes ΦmDn containing practically constant ratios of tetramers, pentamers, and hexamers (m+n=4, 5, and 6) is obtained, regardless of the composition and structure of the initial cyclosiloxane and of the conditions of rearrangement (polymerization). The cyclopentasiloxanes ΦmD5-m are less active in the process of rearrangement than the cyclotetrasiloxanes ΦmD4-m. The activity of the cyclosiloxanes in rearrangement in the presence of a base rises in the sequence D4?ΦD3 ≈ Φ2D33D24D < Φ2D2 < Φ3D.  相似文献   

6.
CoIn3, RhIn3, and IrIn3 were synthesized by reacting the elements in sealed tantalum tubes at 1170 K and subsequent annealing at 770 K. The structures of the three compounds (FeGa3 type, space group P42/mnm) were refined from single crystal X-ray data: a = 682.82(6), c = 709.08(7) pm, wR2 = 0.0407, 397 F2 values for CoIn3, a = 698.28(8), c = 711.11(9) pm, wR2 = 0.0592, 418 F2 values for RhIn3, and a = 699.33(5), c = 719.08(5) pm, wR2 = 0.0625, 482 F2 values for IrIn3 with 16 parameters for each refinement. The structures may be considered as an intergrowth of tungsten-like building blocks of indium atoms and AlB2-like slabs of compositions In&Co, In&Rh, and In&Ir, respectively. These are compared with the related intergrowth variants found for compounds with ordered U3Si2 and Zr3Al2 type structure. Semi-empirical band structure calculations for RhIn3 reveal low density-of-states (DOS) at the Fermi level and negative Rh–Rh crystal orbital overlap populations (COOP) indicating antibonding Rh–Rh interactions. The bonding characteristics of CoIn3, RuIn3, and IrIn3 are similar to RhIn3. Magnetic susceptibility measurements of compact polycrystalline samples of CoIn3, RhIn3, and IrIn3 indicate weak Pauli paramagnetism.  相似文献   

7.
Low-temperature heat capacity measurements were made on DyFe3, DyCo3, DyNi3, and LaNi3 over the temperature range 1.4–15°K. Two anomalies, observed at 1.8 and 9.3°K, are ascribed to the presence of an oxide and a hydride. Another anomaly exists at 3.2°K, which may be due to hydroxide. The observed electronic specific heat coefficients are interpreted in terms of the band structure of these materials.  相似文献   

8.
Crystal structure refinements of KN3, RbN3, CsN3, and TIN3 The crystal structures of the isostructural compounds KN3, RbN3, CsN3 and TIN3 were refined by the method of least-squares using new X-ray diffraction data. The substances crystallize in a tetragonal variety of the CsCl type (space group I4/mcm) with four formula units per unit cell. The metal ions are surrounded by eight closest N atoms in a distorted quadratic antiprismatic arrangement at distances which correspond to the sum of the ionic radii. The azide ions are strictly linear and symmetrical with N — N bond lengths of 1.16 to 1,18 Å.  相似文献   

9.
IR- and RAMAN Spectra of CuN3, AgN3, TlN3, BiON3, Cu(N3)2, and α-Pb(N3)2 The vibrational spectra of the title compounds were recorded and assigned with respect to their crystal structure. The RAMAN spectra mere obtained in aqueus sus-pension.  相似文献   

10.
Starting from the para‐phenylenediamine derivative HN(SiMe3)‐C6H4‐NH(SiMe3), a lithiation and subsequent borylation give [(MeO)2B]N(SiMe3)‐C6H4‐N(SiMe3)[B(OMe)2] ( 1 ), the hydridation of which yields Li2[(H3B)N(SiMe3)‐C6H4‐N(SiMe3)(BH3)] ( 2 ). Applying ZrCl4 upon 2 initiates a condensation to give the title compound [‐N(SiMe3)‐p‐C6H4‐N(SiMe3)‐BH‐]2, a hetero[3, 3]paracyclophane with two N‐B‐N chains that connect the para‐phenylene units. The product 3 crystallizes in the orthorhombic space group P212121.  相似文献   

11.
The orthothioborates Na3BS3, K3BS3 and Rb3BS3 were prepared from the metal sulfides, amorphous boron and sulfur in solid state reactions at temperatures between 923 and 973 K. In a systematic study on the structural cation influence on this type of ternary compounds, the crystal structures were determined by single crystal X‐ray diffraction experiments. Na3BS3 crystallizes in the monoclinic space group C2/c (No. 15) with a = 11.853(14) Å, b = 6.664(10) Å, c = 8.406(10) Å, β = 118.18(2)° and Z = 4. K3BS3 and Rb3BS3 are monoclinic, space group P21/c (No. 14) with a = 10.061(3) Å, b = 6.210(2) Å, c = 12.538(3) Å, β = 112.97(2) and a = 10.215(3) Å, b = 6.407(1) Å, c = 13.069(6) Å, β = 103.64(5)°, Z = 4. The potassium and rubidium compounds are not isotypic. All three compounds contain isolated [BS3]3– anions with boron in a trigonal‐planar coordination. The sodium cations in Na3BS3 are located between layers of orthothioborate anions, in the case of K3BS3 and Rb3BS3 stacks of [BS3]3– entities are connected via the corresponding cations. X‐ray powder patterns were measured and compared to calculated ones obtained from single crystal X‐ray structure determinations.  相似文献   

12.
13.
Preparation and Structural Investigation of K3NO3 Synthesis and crystal growth of K3NO3 is described. At room temperature K3NO3 is cubic (a = 521.4 pm, Pm3m) and crystallizes corresponding to the formula (NO2)OK3 in the perovskite-type of structure (diffractometerdata, R = 5.5%).  相似文献   

14.
The geometrical structure, force fields, and vibrational spectra of the ClO 3 ? ion and LiClO3, NaClO3, and KClO3 molecules are studied using the Hartree-Fock (HF) method and second-order Möller-Plesset (MP2) perturbation theory in double-zeta basis sets complemented with polarization and diffuse functions. Routes of intramolecular rearrangements corresponding to migration of the M+ cations around the ClO 3 ? anion are investigated. The calculations showed that the molecular structure of alkaline metal chlorates changes in the series LiClO3 → NaClO3 → KClO3. The LiClO3 molecule has an essentially bidentate configuration of Cs symmetry; the KClO3 molecule has tridentate coordination of C3v symmetry. The NaClO3 molecule exists as two isomeric forms having similar energies: tridentate (C3v) and bidentate (Cs) forms separated by a low potential barrier (199 cm?1 ? HF, 170 cm?1 ? MP2); the energy differences between the isomers are ΔE(Cs ? C3v)=?0.5 (HF), 0.4 kJ/mole (MP2). The theoretical vibrational spectra of molecules agree with the available experimental data.  相似文献   

15.
The Perthioborates RbBS3, TIBS3, and Tl3B3S10 . RbBS3 (P21/c, a=7.082(2) Å, b=11.863(4) Å, c=5.794(2) Å, β=106.54(2)°) was prepared as colourless, plate-shaped crystals by reaction of stoichiometric amounts of rubidium sulfide, boron, and sulfur at 600°C and subsequent annealing. TlBS3 (P21/c, a=6.874(3) Å, b=11.739(3) Å, c=5.775(2) Å, β=113.08(2)°) which is isotypic with RbBS3 was synthesized from a sample of the composition Tl2S · 2 B2S3. The glassy product which was obtained after 7 h at 850°C was annealed in a two zone furnace for 400 h at 400→350°C. Yellow crystals of TlBS3 formed at the warmer side of the furnace. Tl3B3S10 (P1 , a=6.828(2) Å, b=7.713(2) Å, c=13.769(5) Å, α=104.32(2)°, β=94.03(3)°, γ=94.69(2)°) was prepared as yellow plates from stoichiometric amounts of thallium sulfide, boron, and sulfur at 850°C and subsequent annealing. All compounds contain tetrahedrally coordinated boron. The crystal structures consist of polymeric anion chains. In the case of RbBS3 and TlBS3 nonplanar five-membered B2S3 rings are spirocyclically connected via the boron atoms. To obtain the anionic structure of Tl3B3S10 every third B2S3 ring of the polymeric chains of MBS3 is to be substituted by a six-membered B(S2)2B ring.  相似文献   

16.
《Polyhedron》1999,18(23):3031-3034
The complex [Ir(CO)2X2][NBu4] (X=Cl, Br) forms Vaska-type complexes, trans-[Ir(ER3)2(CO)X], when treated with two equivalents of aryl- or alkyl-phosphines, arsines, or stibines under a CO atmosphere. The synthesis is general for a wide range of phosphines, arsines, or stibines irrespective of the cone angle. For small cone-angle ligands, the initial addition of ligand to [Ir(CO)2X2][NBu4] is performed at low temperature. The synthesis and characterisation of three new Vaska-type complexes trans-[Ir(P(OMe)3)2(CO)Cl], trans-[Ir(AsMe3)2(CO)Cl], and trans-[Ir(AsEt3)2(CO)Cl] is also reported.  相似文献   

17.
The processes of vibrational relaxation and unimolecular dissociation of the perfluoromethyl halides CF3Cl, CF3Br, and CF3I have been studied in the shock tube with the laser-schlieren technique. Vibrational relaxation was resolved in pure CF3Cl and CF3Br (400–484 K and 400–500 K, respectively), and in the mixtures; 2% CF3Cl/Kr (500–1000 K), 10% CF3Cl/Kr (440–670 K), 4% CF3Br/Kr (450–850 K), and 2% CF3I/Kr (620–860 K). Relaxation in the pure gases is extremely rapid, but shows a well-resolved, accurately exponential decay which provides very precise relaxation times in close agreement with ultrasonic results. Relaxation times as short as 0.1 μs-atm can be resolved, showing the method has a resolution within a factor 2–3 of the best ultrasonic methods. Relaxation dilute in rare gas shows a complex double exponential behavior consistent with a two-stage series process. Rates of CF3(SINGLEBOND)X fission in these mixtures were measured over 1800–3000 K, P<0.55 atm, for CF3Cl; 1600–2500 K, P<0.55 atm, in CF3Br; and 1260–2100 K, P<0.34 atm, in CF3I. Rates for dissociation were derived from a full profile modeling using a secondary mechanism of six CF3 reactions. RRKM analysis showed all dissociations to lie near the low pressure limit. Using literature barriers, these rates are best fit with (ΔE)all=−270 cm−1 for CF3Cl, 〈ΔEdown=0.3 T for CF3Br, and 〈ΔEdown=800 cm−1 for CF3F. All these transfers are on the large side, similar to those found in other halogenated methanes. © 1997 John Wiley & Sons, Inc.  相似文献   

18.
Zusammenfassung Die Phasen ScHg, ScHg3, YCd, YHg und YHg3 werden aus den metallischen Komponenten hergestellt und kristallchemisch untersucht. ScHg, YCd und YHg gehören zum CsCl-Typ (B 2), ScHg3 und YHg3 zum MgCd3-Typ (DO19).  相似文献   

19.
K3SbSe3, Rb3SbSe3, and Cs3SbSe3 – Synthesis and Crystal Structure The compounds K3SbSe3, Rb3SbSe3 and Cs3SbSe3 were synthesized by heating mixtures of Sb2O3 and an alkalicarbonate in a stream of hydrogen saturated by selenium in a temperature range between 750 °C and 800 °C. The compounds crystallize isostructural with Na3AsS3. A comparison of atomic distances and bond angles with those of the isostructural arsenic and bismuth compounds shows the effect of lone pairs.  相似文献   

20.
The catalytic rearrangement of the cyclopentasiloxanes mD5-m, where represents a 3, 3, 3-trifluoropropyl(methyl)siloxane link and D a dimethylsiloxane link, and m=2–5 has been studied by the method described previously [1]. The rate of rearrangement and the rate of formation of a linear polysiloxane rise with an increase in m from 2 to 4. The equilibrium concentration of the linear polysiloxane formed from mD5-m and from mD4-m (m=0–4) [1] is inversely proportional to the molar fraction of links in the ring and rises with an increase in the total concentration of siloxane links in solution. Results have been obtained on the kinetics of the formation of the cyclosiloxanes mDn (where m=0–5, n=0–5, and m+n=3-6) during the rearrangement of the cyclopentasiloxanes mD5-m. It has been established that at equilibrium a mixture of cyclosiloxanes mDn containing practically constant ratios of tetramers, pentamers, and hexamers (m+n=4, 5, and 6) is obtained, regardless of the composition and structure of the initial cyclosiloxane and of the conditions of rearrangement (polymerization). The cyclopentasiloxanes mD5-m are less active in the process of rearrangement than the cyclotetrasiloxanes mD4-m. The activity of the cyclosiloxanes in rearrangement in the presence of a base rises in the sequence D4D3 2D3<3D2<4D < 2D2 < 3D.For part II, see [1].  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号