首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A procedure for the direct GFAAS determination of Ni in petroleum samples using a solid sampling strategy is proposed. Palladium was used as conventional modifier. Central composite design multivariate optimization defined the optimum temperature program and the Pd mass, allowing calibration using aqueous analytical solution. The limit of detection (LOD) at the optimized conditions was 0.23 ng of Ni, for typical sample masses between of 0.10 and 0.60 mg. Linearity at least up to 11 ng of Ni and a characteristic mass of 45 pg were observed, defining a dynamic range between 0.52 and 110 μg g−1. Typical coefficients of variation (n = 10) in the analysis of oil reference materials were 7%. Method validation was performed both by the analysis of oil certified reference materials and by comparison with an independent method (ASTM 5863-B). No statistically significant difference was observed between obtained and expected values. The total determination cycle lasted 5 min, equivalent to a sample throughput of 6 h−1 for duplicate determinations.  相似文献   

2.
A multisyringe flow-injection approach has been coupled to hydride generation-atomic fluorescence spectrometry (HG-AFS) with UV photo-oxidation for dimethylarsinic (DMA), inorganic As and total As determination, depending on the pre-treatment given to the sample (extraction or digestion). The implementation of a UV lamp allows on-line photo-oxidation of DMA and the following arsenic detection, whereas a bypass leads the flow directly to the HG-AFS system, performing inorganic arsenic determination. DMA concentration is calculated by the difference of total inorganic arsenic and measurement of the photo-oxidation step. The detection limits for DMA and inorganic arsenic were 0.09 and 0.47 μg L(-1), respectively. The repeatability values accomplished were of 2.4 and 1.8%, whereas the injection frequencies were 24 and 28 injections per hour for DMA and inorganic arsenic, respectively. This method was validated by means of a solid reference material BCR-627 (muscle of tuna) with good agreement with the certified values. Satisfactory results for DMA and inorganic arsenic determination were obtained in several water matrices. The proposed method offers several advantages, such as increasing the sampling frequency, low detection limits and decreasing reagents and sample consumption, which leads to lower waste generation.  相似文献   

3.
This study was designed to determine the ultra-trace amounts of lead (Pb) and cadmium (Cd) in various cereals (rice, wheat, barley, peas, beans, corn and lentil) obtained from the markets in Kermanshah city, West Iran. An efficient microextraction method was applied to separation and preconcentration of metal ions. This method is dispersive liquid–liquid microextraction based on solidification of floating organic drop, which overcomes the most important problems of other microextraction techniques. Some effective parameters on extraction were studied and, under optimised conditions, the enhancement factors were 122 and 115 for Cd and Pb, respectively. The calibration graphs were linear in the range of 0.1–50 µg kg?1 with correlation coefficient more than 0.992. The detection limit was 0.05 µg kg?1. The values of intra-day relative standard deviations and inter-day relative standard deviations were in the range of 4.7?5.3% and 6.0?6.8%, respectively. The Pb concentrations in rice and wheat samples were considerably higher than the allowable limits set by World Health Organization. The method was successfully applied to determination of the Pb and Cd in cereals, and application of the proposed method to the analysis of two certified reference materials produced results that were in good agreement with the certified values.  相似文献   

4.
The slurry sampling technique has been applied for the determination of As, Cd, and Pb in mainstream cigarette smoke condensate (MS CSC) by graphite furnace-atomic absorption spectrometry (GF-AAS) and inductively coupled plasma-mass spectrometry (ICP-MS). The MS CSC of the 1R4F Reference Cigarette was collected by electrostatic precipitation and was subsequently prepared as two slurry samples with and without the dispersing agent Triton X-100. Comparison of results determined by ICP-MS analyses of the 1R4F MS CSC slurry samples with those from the conventional microwave digestion method revealed good agreement. The precision of Triton X-100 slurry sampling and of microwave-assisted digestion was better than 10% RSD, and both were superior to slurry sampling without use of Triton X-100. The accuracy of the analytical results for the Triton X-100 slurry sample was further verified by graphite furnace-atomic absorption spectrometry (GF-AAS). For GF-AAS, the method limits of detection are 1.6, 0.04, and 0.5 microg x L(-1) for As, Cd, and Pb, respectively. For ICP-MS, the method limits of detection are 0.06, 0.01, and 0.38 microg x L(-1) for As, Cd, and Pb, respectively. The MS CSC of the 1R4F Reference Cigarette was collected in accordance with the Federal Trade Commission (FTC) smoking regime (35 mL puff volume of 2-s puff duration at an interval of 60 s) and the concentrations of As, Cd and Pb were 6.0+/-0.5, 69.3+/-2.8, and 42.0+/-2.1 ng/cigarette, respectively.  相似文献   

5.
6.
This article deals with the electrocatalytic and electrochemical mechanisms of hydride formation and their dependence on hydrogen overvoltage. A three-electrode-arrangement was used to determine the hydrogen overvoltage of different cathode materials (Pt, Au, Ag, glassy carbon, Cd, Pb, amalgamated Ag). The applicability of these cathode materials was tested for hydride formation using As(III), As(V), Sb(III), Sb(V), Se(IV), and Sn(IV). Glassy carbon is the most suitable cathode material for hydride generation with As(III), Sb(III), Se(IV), and Sn(IV). Hg–Ag is well suited for the production of stibine and arsine. As(III), As(V), Sb(III), and Sb(V) were all converted into their hydrides with efficiencies > 90%. A detection limit in the range of 0.11–0.13 μg L–1 for As and Sb (sample volume 200 μL) was obtained for cathode materials with a high hydrogen overvoltage. The precision of replicate measurements was better than 5% calculated as variation coefficient. The accuracy of the presented method was verified by analysis of certified reference materials and tissues of cancer patients. The recovery rates for As and Se were calculated to be 93–108%.  相似文献   

7.
In this work, determination of selenium in various water samples was done by using hydride generation atomic absorption spectrometry. The most appropriate values of HCl concentration, NaBH4 concentration, NaOH concentration, flow rate of argon and flow rate of waste solution were determined. The optimum concentration of the HCl, NaBH4 and NaOH solutions were found to be 7.0 mol L?1, 1.0% and 0.75%, respectively. The optimum flow rate of Ar gas and waste solution were also found to be 100.9 mL min?1 and 4.0 mL min?1, respectively. Values of LOD and LOQ were calculated separately for total Se and Se(IV). LOD and LOQ values were calculated 0.56 μg L?1, 1.87 μg L?1 for total Se and 0.72 μg L?1, 2.40 μg L?1 for Se(IV), respectively. The precision was evaluated by relative standard deviation (RSD%) was found to be 3.5% for total Se and 3.1% for Se(IV) (n = 11). A standard reference material (NIST 1643e) was used in order to check the accuracy of the proposed method. There was a good agreement between certified and found values for standard reference material. The method was applied to the analysis of total Se and Se(IV) concentrations in tap water samples collected from the various regions of Mu?la. Proposed method showed spike recovery ranges from 92% to 116% in water samples.  相似文献   

8.
Solidified floating organic drop microextraction was applied as a separation/preconcentration step prior to the electrothermal atomic absorption spectrometric (ETAAS) determination of ultra trace of antimony species. The method was based on the formation of an extractable complex between Sb(III) and ammonium pyrrolidinedithiocarbamate at pH ~ 5, while Sb(V) was remained in the aqueous phase. The antimony extracted into 1-undecanol was determined by ETAAS. Total antimony was determined after the reduction of Sb(V) to Sb(III) with potassium iodide and ascorbic acid. The amount of Sb(V) was determined from the difference of concentration of total antimony and Sb(III). Under the optimum conditions an enhancement factor of 437.5 and a detection limit of 5.0 ng L?1for the preconcentration of 25 mL of sample was achieved. The relative standard deviation at 300 ng L?1 of antimony was found to be 3.5 % (n = 6). The proposed method was successfully applied to the determination of antimony in tea, basil and natural water samples.  相似文献   

9.
The present study developed an high-performance liquid chromatography (HPLC) method for the simultaneous determination of urinary metabolites of endogenous cortisol, 6α-hydroxycortisol (6α-OHF) and 6β-hydroxycortisol (6β-OHF), in human urine, using 6α-hydroxycorticosterone as internal standard. 6α-OHF and 6β-OHF were extracted from urine with ethyl acetate by using a Sep-Pak C18 plus cartridge. Separation of the stereoisomers was achieved on a reversed-phase hybrid column by a gradient elution of (A) 0.05 M KH2PO4–0.01 M CH3COOH (pH 3.77) and (B) 0.05 M KH2PO4–0.01 M CH3COOH/acetonitrile (2:3, v/v). 6α-OHF and 6β-OHF were well separated on an XTerra MS C18 5 μm column using two types of stepwise gradient elution program (programs 2 and 3). Resolutions of 6α-OHF and 6β-OHF were Rs = 4.41 for program 2 and Rs = 4.60 for program 3. The analysis was performed within 23~26 min, monitored by UV absorbance at 239 nm. The lower limits of detection of 6α-OHF and 6β-OHF were 0.80 ng per injection (s/n = ca. 8), and the lower limits of quantification were 5.02 ng/ml for 6α-OHF and 41.08 ng/ml for 6β-OHF, respectively. The within-day reproducibilities in the amounts of 6α-OHF and 6β-OHF determined were in good agreement with the actual amounts added, the relative errors being −5.37% and −3.73% (gradient 2) and −5.69% and −3.96% (gradient 3) for both 6α-OHF and 6β-OHF, respectively. The inter-assay precisions (RSDs) for 6α-OHF and 6β-OHF were less than 1.99% (gradient 2) and 2.61% (gradient 3), respectively. The present HPLC method was applied to the measurement of 6α-OHF and 6β-OHF in urine to evaluate the time courses of 6α-hydroxylation and 6β-hydroxylation clearances of cortisol during 40 days for phenotyping CYP3A in a healthy subject.  相似文献   

10.
A preliminary investigation using gas chromatography–mass spectrometry (GC–MS) to analyze the nicotine contained in tobacco leaves was carried out. Nicotine is an alkaloid and tobacco leaves was extracted with methanol and determined by GC–MS. The detection limit for nicotine was at the ppm level for non selective monitoring and the nanogram level for selective detection. This is a simple chromatography–mass spectrometry method for the analysis of nicotine in tobacco leave. Compared to other currently utilized methods for the detection of nicotine in tobacco leaves, the GC–MS provided advantages of high sensitivity, nicotine specific detection and lower instrumentation cost.  相似文献   

11.
Current urinary bladder cancer diagnosis is commonly based on a biopsy obtained during cystoscopy. This invasive method causes discomfort and pain in patients. Recently, taurine and several other compounds such as L-phenylalanine and hippuric acid in urine were found to be indicators of bladder cancer. However, because of a lack of sensitive and accurate analytical techniques, it is impossible to detect these compounds in urine at low levels. In this study, using liquid chromatography–tandem mass spectrometry (LC-MS/MS), a noninvasive method was developed to separate and detect these compounds in urine. 15N2-L-glutamine was used as the internal standard, and creatinine acted as an indicator for urine dilution. A phenyl-hexyl column was used for the separation at an isocratic condition of 0.2% formic acid in water and 0.2% formic acid in methanol. Analytes were detected in multiple-reaction monitoring with positive ionization mode. The limit of detection range is 0.18–6 nM and the limit of quantitation ranges from 0.6 to 17.6 nM. The parameters affecting separation and quantification were also investigated and optimized. Proper clinical validation of these biomarkers can be done using this reliable, fast, and simple method. Furthermore, with simple modifications, this method could be applied to other physiological fluids and other types of diseases.  相似文献   

12.
Ying Gu  Xiashi Zhu 《Mikrochimica acta》2011,173(3-4):433-438
A sensitive and selective method for the speciation of Cr(III) and Cr(VI) in water samples was developed. It is based on the selective binding of the complex formed between Cr(III) and 4-(2-pyridylazo)resorcinol adsorbed on a cross-linked polymer modified with β-cyclodextrin and placed in a micro-column. Graphite furnace atomic absorption spectrometry (GFAAS) was used to quantify chromium. Cr(VI) ion is not adsorbed but remains in the aqueous sample phase. Thus, an in-situ separation of Cr(VI) and Cr(III) is accomplished. The concentration of Cr (VI) was calculated by subtracting the value for Cr(III) from that for total chromium. Under optimum conditions, the limit of detection of Cr(III) is 0.056 μg L?1, and the linear range is from 2.0 to 160.0 μg L?1. The relative standard deviation is 2.5% (n?=?3, at 30.0 μg L?1). The preconcentration factor is 25. The method was applied to the speciation of chromium in water samples, and recoveries in spiked real samples range from 101.9% to 104.5%. A reference water sample (GBW(E)080642) also was analyzed, and the results were in good agreement with the certified values.
Figure
The quantitative adsorption (≥90%) on the β-CDCP for Cr(III) was found in the range of the pH 5.5–6.0, whereas the adsorption efficiency for Cr(VI) at this pH range was rather low.  相似文献   

13.
A sensitive and reliable liquid chromatographic-tandem mass spectrometric method for enantiomeric determination of five chiral azole antifungals (econazole, ketoconazole, miconazole, tebuconazole, and propiconazole) in wastewater and sludge has been established and validated. An isotope-labeled internal standard was used for quantification. Recovery of the individual enantiomers was usually in the range of 77-102 % for wastewater and 71-95 % for sludge, with relative standard deviations within 20 %. No significant difference (p>0.05) was observed between recovery of pairs of enantiomers of the chiral azole antifungals except for those of tebuconazole. Method quantification limits for individual enantiomers were 0.3-10 ng L(-1) and 3-29 ng g(-1) dry weight for wastewater and sludge, respectively. The method was used to investigate the enantiomeric composition of the azole pharmaceuticals in wastewater and sludge samples from a sewage treatment plant in China. Enantiomers of miconazole, ketoconazole, and econazole were widely detected. The results showed that the azole antifungals in wastewater and sludge were generally racemic or marginally non-racemic. The method is a useful tool for investigation of the enantiomeric occurrence, behavior, and fate of the chiral azole antifungals in the environment.  相似文献   

14.
Eight naturally occurring capsaicinoids have been determined in Capsicum by use of high-purity standards, with norcapsaicin as an internal standard. The solid standards were rigorously checked for purity. The sensitivity of electrospray ionization (ESI), atmospheric-pressure chemical ionization (APCI), and coordination ion-spray (CIS; with silver) toward the capsaicinoids were measured and compared. The highest sensitivity was found for positive-ion ESI. Method validation of the liquid chromatography–ESI-mass spectrometry (LC–ESI-MS) determination is reported, including tests for repeatability (4%), detection limit (5 pg injected), linear range (20–6 ng injected), quantitation (excellent linearity; <2% relative standard deviation), and recovery (99–103%). The major and minor capsaicinoids in a commercial plant extract and in chili pepper fruits were quantified.Electronic Supplementary Material Supplementary material is available for this article at  相似文献   

15.
A sensitive and accurate method is described for the determination of ultra-trace nickel in environmental samples with in-situ trapping of volatile species in iridium-palladium coated graphite furnace atomic absorption spectrometry. The effects of the conditions for the generation and collection of volatile nickel species, such as medium acidity, potassium borohydride concentration, enhancement reagent concentration, reaction temperature, as well as graphite tube coating, carrier gas flow rate and trapping time were investigated. Phenanthroline was selected as the enhancement reagent due to its good enhancing effect, and iridium–palladium coating was used for the in-situ trapping of volatile nickel species at 300°C. Under the optimal conditions, the calibration curve was linear from 0.21 up to 30.0 ng mL?1 with correlation coefficient of 0.9991, the detection limit (S/N = 3) was 0.21 ng mL?1 for 4 mL sample volumes and the relative standard deviation for 11 determinations of Ni at 10 ng mL?1 was 3.5%. The results found by the proposed methods are accordant with the certified values of water, soil and tea certified reference materials. The proposed methods have been applied for the determination of ultra-trace Ni in tap, river and wastewater, as well as rice and soil samples, with recoveries ranging from 97.3 to 100.5%.  相似文献   

16.
A simple, rapid and efficient method has been developed for the extraction, preconcentration and determination of copper, lead and zinc ions in water samples by air-assisted liquid–liquid microextraction coupled with graphite furnace atomic absorption spectrometry (GFAAS). In the proposed method, much less volume of an organic solvent (in the order of some µL) was used as the extraction solvent in the absence of disperser solvent. Fine organic droplets were formed by sucking and injecting of the mixture of aqueous sample solution and extraction solvent with a syringe for several times in a conical test tube. After extraction, phase separation was achieved by centrifugation and the enriched analytes in the sedimented phase were determined by GFAAS. Several variables potentially affecting the extraction efficiency were investigated and optimized. Calibration graphs were linear in the concentration range of 45.0–1100 ng L?1. Detection limits were in the range of 18.0–26.0 ng L?1. The accuracy of the developed procedure was checked by analyzing NRCC-SLRS4 Riverine water as a certified reference material. Finally, the proposed method was successfully applied to determine the selected heavy metals in tap, surface and river water samples.  相似文献   

17.
A sensitive and reliable method using capillary HPLC with UV-diode array detection (DAD) has been developed and validated for the trace determination of residues of 10 β-lactam antibiotics of human and veterinary use, in milk, chicken meat and environmental water samples. The analytes included ampicillin, amoxicillin, penicillin V, penicillin G, cloxacillin, oxacillin, dicloxacillin, nafcillin, piperacillin and clavulanic acid. Legal levels are regulated by the EU Council regulation 2377/90 in animal edible tissues for these compounds. For food analysis, a solid-phase extraction (SPE) procedure consisting in a tandem of Oasis HLB and Alumina N cartridges was applied for off-line preconcentration and cleanup. For water analysis, the first step was only necessary. The limits of detection for the studied compounds were between 0.04–0.06 μg l−1 for water samples and 0.80–1.40 μg l−1 (or μg kg−1) in the case of foods derived from animals. Average recoveries for fortified samples at different concentration levels ranged between 82.9% and 98.2%, with relative standard deviations (RSDs) lower than 9%. The method showed the advantages of capillary HPLC for the detection of these widely applied antibiotics in different samples at very low concentration levels.  相似文献   

18.
A solid-phase extraction coupled with dispersive liquid–liquid microextraction (DLLME) method followed by graphite furnace atomic absorption spectrometry (GFAAS) was developed for the extraction, preconcentration, and determination of ultra trace amounts of lead in water samples. Variables affecting the performance of both steps were thoroughly investigated. Under optimized conditions, 100 mL of lead solution were first concentrated using a solid phase sorbent. The extracts were collected in 1.50 mL of THF and 18 μL of carbon tetrachloride was dissolved in the collecting solvent. Then 5.0 mL pure water was injected rapidly into the mixture of THF and carbon tetrachloride for DLLME, followed by GFAAS determination of lead. The analytical figures of merit of method developed were determined. With an enrichment factor of 1,800, a linear calibration of 3–60 ng L?1 and a limit of detection of 1.0 ng L?1 were obtained. The relative standard deviation for seven replicate measurements of 30 ng L?1 of lead was 5.2 %. The relative recoveries of lead in mineral, tap, well, and river water samples at spiking level of 10 and 20 ng L?1 are in the range 94–106 %.  相似文献   

19.
In this work, we present a fast and simple approach for detection of silver nanoparticles (AgNPs) in biological material (parsley) by solid sampling high-resolution–continuum source atomic absorption spectrometry (HR-CS AAS). A novel evaluation strategy was developed in order to distinguish AgNPs from ionic silver and for sizing of AgNPs. For this purpose, atomisation delay was introduced as significant indication of AgNPs, whereas atomisation rates allow distinction of 20-, 60-, and 80-nm AgNPs. Atomisation delays were found to be higher for samples containing silver ions than for samples containing silver nanoparticles. A maximum difference in atomisation delay normalised by the sample weight of 6.27?±?0.96 s mg?1 was obtained after optimisation of the furnace program of the AAS. For this purpose, a multivariate experimental design was used varying atomisation temperature, atomisation heating rate and pyrolysis temperature. Atomisation rates were calculated as the slope of the first inflection point of the absorbance signals and correlated with the size of the AgNPs in the biological sample. Hence, solid sampling HR-CS AAS was proved to be a promising tool for identifying and distinguishing silver nanoparticles from ionic silver directly in solid biological samples.
Figure
Fast and simple approach for direct identification and sizing of silver nanoparticles in biological material (parsley) applying solid sampling high-resolution continuum source atomic absorption spectrometry and a novel data evaluation strategy  相似文献   

20.
Slurried sediment and soil samples of the certified reference materials with a highly elevated level of the metals of interest (Mn, Cr and V) were analysed by electrothermal atomic absorption spectrometry (ETAAS) with Zeeman effect background correction. The method of slurry preparation and time-temperature programmes were optimized and, finally, the use of chemical modifiers was not necessary. The effect of alternate spectral lines and gas mini-flows on characteristic masses of analytes was studied. The homogeneity of samples and the influence of short sample grinding were also discussed. The simple, aqueous standard based calibration graphs (except Mn at the concentration > 1000 mg kg−1) were applied for the quantification of results. The results of determinations obtained by slurry sampling agreed well with the cetified values, and the relative standard deviations (RSDs) for the over-all analytical procedure repeatability (at slurries concentration level about 2 mg/2 ml) were less than 9.5%, except manganese (10.4%).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号