首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 859 毫秒
1.
Long-range hydrodynamics between colloidal particles or fibers is modelled by the fluid particle model. Two methods are considered to impose the fluid boundary conditions at colloidal surfaces. In the first method radial and transverse friction forces between particle and solvent are applied such that the correct friction and torque follows for moving or rotating particles. The force coefficients are calculated analytically and checked by numerical simulation. In the second method a collision rule is used between colloidal particle and solvent particle that imposes the stick boundary conditions exactly. The collision rule comprises a generalisation of the Lowe-Anderson thermostat to radial and transverse velocity differences.  相似文献   

2.
The direct force measurement between colloidal surfaces has been an essential topic in both theories and applications of surface chemistry. As particle size is decreased from micron size down to true nano size (<10 nm), surface forces are increasingly important. Nanoparticles at close proximity or high solids loading are expected to show a different behavior than what can be estimated from continuum and mean field theories. The current tools for directly measuring interaction forces such as a surface force apparatus or atomic force microscopy (AFM) are limited to particles much larger than nanosize. Here a modified colloidal probe technique is suggested using a multiwalled carbon nanotube (MWNT) to overcome this problem. Determination of zero separation in AFM is critical to extract a reliable force-separation curve when MWNT is used as a probe. Hence, a systematic approach to the data collection for a nanosize colloidal probe is proposed and a sample of a direct surface force measurement curve obtained with the MWNT probe is presented.  相似文献   

3.
It is the forces between the microscopic constituents of materials which to a large extent determine the macroscopic properties. For example, it is the differences in bonding between the carbon atoms which determines the different physical properties of carbon and graphite. The same is true in colloidal systems. In colloidal systems, there are three common types of long-range interactions between particles: van der Waals forces, electrical double layer forces and steric forces. In this paper, examples as to how these forces can be modified and even manipulated will be given. To convincingly demonstrate these effects, it is necessary to measure these interaction forces. We have achieved this by using the principles of atomic force microscopy (AFM). The principle is simple, a small particle, 5-30 microm, is attached onto a small weak cantilever spring. The interaction between this particle and another particle or a surface is measured by monitoring the deflection of the spring as the two particles are moved together. In this paper, I shall give examples of direct measurements of van der Waals, electrical double layer and steric forces and show how they can be modified and how these modifications affect the properties of bulk suspensions. Similar principles are involved in the interactions of biological materials. However, nature is much cleverer than man such that many of the macromolecules on cell surfaces are able to specifically recognise only one other molecule. An example of this recognition-type interaction, namely, cholera toxin interacting with the glycolipid Gm1, will also be presented. Finally, the adhesion of cells to surfaces of different surface chemistries has been determined; this is of significance in many fields ranging from fouling of filtration membranes on the one hand to the biocompatibility of surgical implants on the other.  相似文献   

4.
The forces of interaction between a silver-coated particle and a flat silver surface in an aqueous medium were measured in the presence of a series of organic amines of varying concentrations. Atomic force microscopy (AFM) was used to quantify the replacement rate of adsorbed citrate molecules on the silver surfaces by a variety of amines, under conditions where the time scale of the amine adsorption was significantly slower than the time scale of the AFM measurements. The decay length of the electrostatic double-layer interaction between the silver surfaces was found to be time independent; thus, the change in surface change density (determined from the interaction forces) was used to quantify the replacement rate of adsorbed citrate by amine. In the absence of amine, the interaction force between the silver surfaces exhibited evidence of a multilayer structure of adsorbed citrate molecules on each silver surface. Upon addition of the amine, a decrease in the interaction force was always observed, where the dynamics of the force were dependent on both concentration and the molecular structure of the amine. These results are discussed with respect to formation of colloidal particles in synthesis routes where particle aggregation has a significant impact on the control of particle morphology and size.  相似文献   

5.
Nanostructured particle coated surfaces, with hydrophobized particles arranged in close to hexagonal order and of specific diameters ranging from 30 nm up to 800 nm, were prepared by Langmuir-Blodgett deposition followed by silanization. These surfaces have been used to study interactions between hydrophobic surfaces and a hydrophobic probe using the AFM colloidal probe technique. The different particle coated surfaces exhibit similar water contact angles, independent of particle size, which facilitates studies of how the roughness length scale affects capillary forces (previously often referred to as "hydrophobic interactions") in aqueous solutions. For surfaces with smaller particles (diameter < 200 nm), an increase in roughness length scale is accompanied by a decrease in adhesion force and bubble rupture distance. It is suggested that this is caused by energy barriers that prevent the motion of the three-phase (vapor/liquid/solid) line over the surface features, which counteracts capillary growth. Some of the measured force curves display extremely long-range interaction behavior with rupture distances of several micrometers and capillary growth with an increase in volume during retraction. This is thought to be a consequence of nanobubbles resting on top of the surface features and an influx of air from the crevices between the particles on the surface.  相似文献   

6.
We investigate in this paper the influence of wetting films on the adhesion forces between macroscopic solid surfaces connected by a liquid bridge. We show that the capillary forces are dependent on the interactions governing the wetting layers, and that those interactions may be determined from the measurement of the capillary force in the presence of a condensable vapor. We illustrate those results with a surface force apparatus experiment where the capillary force between high-energy surfaces is measured for different liquid pressures.  相似文献   

7.
In this paper the problem of calculating the liquid flow force on a particle in interaction with an air bubble with a mobile surface in flotation as a function of the separation distance was solved. The force equation was obtained by first deriving the disturbed flow confined between the surfaces. The model for the force includes the separation distance between the bubble and the particle, the particle size, the bubble's Reynolds number, the bubble rise velocity, and the polar position of the particle on the bubble surface. The proposed equations provide an exact solution to the situation where the particle and the bubble are very close together. The attractive flow force and the surface forces are of similar orders of magnitude. Consequently, the models presented in this paper should provide a better estimate for calculating the forces on particles interacting with air bubbles in mineral flotation and other separation operations involving colloidal interactions.  相似文献   

8.
The interaction between a colloidal polystyrene particle mounted on an AFM cantilever and a hydrophilic and a hydrophobic surface in aqueous solution is investigated. Despite the apparent simplicity of these two types of systems a variety of different types of interactions are observed. The system containing the polystyrene particle and a hydrophilic surface shows DLVO-like interactions characteristic of forces between charged surfaces. However, when the surface is hydrophobized the interaction changes dramatically and shows evidence of a bridging air bubble being formed between the particle and the surface. For both sets of systems, plateaus of constant force in the force curves are obtained when the particle is retracted from the surface after being in contact. These events are interpreted as a number of individual polystyrene molecules that are bridging the polystyrene particle and the surface. The plateaus of constant force are expected for pulling a hydrophobic polymer in a bad (hydrophilic) solvent. The plateau heights are found to be of uniform spacing and independent of the type of surface, which suggests a model by which collapsed polymers are extended into the aqueous medium. This model is supported by a full stretching curve showing also the backbone elasticity and a stretching curve obtained in pentanol, where the plateau changes to a nonlinear force response, which is typical for a polymer in a good or neutral solvent. We suggest that these polymer bridges are important in particular for the interaction between polystyrene and the hydrophilic surface, where they to some extent counteract the long-range electrostatic repulsion.  相似文献   

9.
The forces between hydrophobic surfaces with physisorbed DNA are markedly and irreversibly altered by exposure to DNA/cetyltrimethylammonium bromide (CTAB) mixtures. In this colloidal probe atomic force microscopy study of the interactions between a hydrophobic polystyrene particle and an octadecyltrimethylethoxysilane-modified mica surface in sodium bromide solutions, we measure distinct changes in colloidal forces depending on the existence and state of an adsorbed layer of DNA or CTAB-DNA complexes. For bare hydrophobic surfaces, a monotonically attractive approach curve and very large adhesion are observed. When DNA is adsorbed at low bulk concentrations, a long-range repulsive force dominates the approach, but on retraction some adhesion persists and DNA bridging is clearly observed. When the DNA solution is replaced with a CTAB-DNA mixture at relative low CTAB concentration, the length scale of the repulsive force decreases, the adhesion due to hydrophobic interactions greatly decreases, and bridging events disappear. Finally, when the surface is rinsed with NaBr solution, the length scale of the repulsive interaction increases modestly, and only a very tiny adhesion remains. These pronounced changes in the force behavior are consistent with CTAB-induced DNA compaction accompanied by increased DNA adsorption, both of which are partially irreversible.  相似文献   

10.
In the commercial bitumen extraction operation, dynamic and static interaction forces between bitumen drops in water determine the likelihood of desirable bitumen coalescence at different process stages. These dynamic and static forces were measured using colloidal particle scattering and hydrodynamic force balance techniques, respectively. In the former technique, dynamic interactions are studied through droplet-droplet collision trajectory measurement. In the latter technique, the static attractive forces between droplets are determined when a doublet is separated with a known and adjustable hydrodynamic force. The dynamic force measurement implies the presence of rigid chains on bitumen surfaces. The mean chain lengths for deasphalted bitumen at pH 7, whole bitumen at pH 7, and whole bitumen at pH 8.5 are 50, 78, and 41 nm, respectively. However, the static force measurement indicates much shorter mean chain lengths (<9 nm) in these three bitumen systems. Shorter chain length indicates weaker repulsive force. This finding of a much weaker repulsion between bitumen droplets under static conditions has important implications on the commercial bitumen extraction operation.  相似文献   

11.
In this study, the vertical motion of a particle in a quiescent fluid falling toward a horizontal plane wall is analyzed, based on simplified models. Using the distance between the particle and wall as a parameter, the effects of various forces acting on the particle and the particle motion are examined. Without the colloidal and Brownian forces being included, the velocity of small particles is found to be approximately equal to the inverse of the drag force correction function used in this study as the particle approaches the near-wall region. Colloidal force is added to the particle equation of motion as the particle moves a distance comparable to its size. It is found that the particle might become suspended above or deposited onto the wall, depending on the Hamaker constant, the surface potentials of the particle and wall, and the thickness of the electrical double layer (EDL). For strong EDL repulsive force and weaker van der Waals (VDW) attractive force, the particle will become suspended above the wall at a distance at which the particle velocity is zero. This location is referred to as the equilibrium distance. The equilibrium distance is found to increase with increased in EDL thickness when a repulsive force barrier appears in the colloidal force interaction. For the weak EDL repulsive force and strong VDW attractive force case, the particle can become deposited onto the wall without the Brownian motion effect. The Brownian jump length was found to be very small. Many Brownian jumps would be required in a direction toward the wall for a suspended particle to become deposited.  相似文献   

12.
The boundary effects on DC-electrokinetic behavior of colloidal cylinder(s) in the vicinity of a conducting wall is investigated through a computational model. The contribution of the hydrodynamic drag, gravity, electrokinetic (i.e., electrophoretic and dielectrophoretic), and colloidal forces (i.e., forces due to the electrical double layer and van der Waals interactions) are incorporated in the model. The contribution of electrokinetic and colloidal forces are included by introducing the resulting forces as an external force acting on the particle(s). The colloidal forces are implemented with the prescribed expressions from the literature, and the electrokinetic force is obtained by integrating the corresponding Maxwell stress tensor over the particles' surfaces. The electrokinetic slip-velocity together with the thin electrical double layer assumption is applied on the surfaces. The position and velocity of the particles and the resulting electric and flow fields are obtained and the physical insight for the behavior of the colloidal cylinders are discussed in conjunction with the experimental observations in the literature.  相似文献   

13.
14.
The interaction between bubbles and solid surfaces is central to a broad range of industrial and biological processes. Various experimental techniques have been developed to measure the interactions of bubbles approaching solids in a liquid. A main challenge is to accurately and reliably control the relative motion over a wide range of hydrodynamic conditions and at the same time to determine the interaction forces, bubble–solid separation and bubble deformation. Existing experimental methods are able to focus only on one of the aspects of this problem, mostly for bubbles and particles with characteristic dimensions either below 100 μm or above 1 cm. As a result, either the interfacial deformations are measured directly with the forces being inferred from a model, or the forces are measured directly with the deformations to be deduced from the theory. The recently developed integrated thin film drainage apparatus (ITFDA) filled the gap of intermediate bubble/particle size ranges that are commonly encountered in mineral and oil recovery applications. Equipped with side-view digital cameras along with a bimorph cantilever as force sensor and speaker diaphragm as the driver for bubble to approach a solid sphere, the ITFDA has the capacity to measure simultaneously and independently the forces and interfacial deformations as a bubble approaches a solid sphere in a liquid. Coupled with the thin liquid film drainage modeling, the ITFDA measurement allows the critical role of surface tension, fluid viscosity and bubble approach speed in determining bubble deformation (profile) and hydrodynamic forces to be elucidated. Here we compare the available methods of studying bubble–solid interactions and demonstrate unique features and advantages of the ITFDA for measuring both forces and bubble deformations in systems of Reynolds numbers as high as 10. The consistency and accuracy of such measurement are tested against the well established Stokes–Reynolds–Young–Laplace model. The potential to use the design principles of the ITFDA for fundamental and developmental research is demonstrated.  相似文献   

15.
Hydroxyapatite is a very interesting material given that it is the main component in tooth enamel and because of its uses in bone implant applications. Therefore, not only the characterization of its surface is of high relevance but also designing reliable methods to study the interfacial properties of films adsorbed onto it. In this paper we apply the colloidal probe atomic force microscopy method to investigate the surface properties of commercially available hydroxyapatite surfaces (both microscopic particles and macroscopic discs) in terms of interfacial and frictional forces. In this way, we find that hydroxyapatite surfaces at physiological relevant conditions are slightly negatively charged. The surfaces were then exposed to human whole saliva, and the surface properties were re-evaluated. A thick film was formed that was very resistant to mechanical stress. The frictional measurements demonstrated that the film was indeed highly lubricating, supporting the argument that this system may prove to be a relevant model for evaluating dental and implant systems.  相似文献   

16.
We have measured the force between a weakly charged micron-sized colloidal particle and flat substrate in the presence of highly charged nanoparticles of the same sign under solution conditions such that the nanoparticles physically adsorb to the colloidal particle and substrate. The objective was to investigate the net effect on the force profile between the microparticle and flat substrate arising from both nanoparticle adsorption and nanoparticles in solution. The experiments used colloidal probe atomic force microscopy (CP-AFM) to measure the force profile between a relatively large (5 μm) colloidal probe glass particle and a planar glass substrate in aqueous solutions at varying concentrations of spherical nanoparticles. At very low nanoparticle concentrations, the primary effect was an increase in the electrostatic repulsion between the surfaces due to adsorption of the more highly charged nanoparticles. As the nanoparticle concentration is increased, a depletion attraction formed, followed by longer-range structural forces at the highest nanoparticle concentrations studied. These results suggest that, depending on their concentration, such nanoparticles can either stabilize a dispersion of weakly-charged colloidal particles or induce flocculation. This behavior is qualitatively different from that in nonadsorbing systems, where the initial effect is the development of an attractive depletion force.  相似文献   

17.
Detailed knowledge of the forces between nanocrystals is very crucial for understanding many generic (eg, random aggregation/assembly and rheology) and specific (eg, oriented attachment) phenomena at macroscopic length scales, especially considering the additional complexities involved in nanocrystals such as crystal orientation and corresponding orientation‐dependent physicochemical properties. Because there are a limited number of methods to directly measure the forces, little is known about the forces that drive the various emergent phenomena. Here, we report on two methods of preparing crystals as force measurement tips used in an atomic force microscope: the focused ion beam method and microlithography method. The desired crystals are fabricated using these two methods and are fixed to the atomic force microscope probe using platinum deposition, ultraviolet epoxy, or resin, which allows for the orientation‐dependent force measurements. These two methods can be used to attach virtually any solid particles (from the size of a few hundreds of nanometers to millimeters). We demonstrate the force measurements between aqueous media under different conditions such as pH.  相似文献   

18.
We describe the use of evanescent wave scattering to measure the separation between the surface of a solid and a particle that is attached to an atomic force microscope (AFM) cantilever. Termed evanescent wave atomic force microscopy, our approach involves measuring the intensity of the light scattered from an evanescent field formed by the total internal reflection of a laser beam at a solid/fluid interface. In a conventional AFM "colloid probe" measurement, this separation must be inferred from an examination of the surface forces. Direct measurement of this separation with an evanescent wave atomic force microscope (EW-AFM) removes some ambiguity in the surface force measurement and, in addition, allows new types of measurements. For example, the force can be monitored at a constant separation. Our evanescent scattering apparatus is essentially identical to that used in total internal reflection microscopy (TIRM), except that we collect the light that scatters back into the incident medium, because the AFM partly obscures the forward scattered light (i.e., light scattered into the transmitted region). Compared to a conventional TIRM measurement, where the particle moves freely, attaching the particle to the cantilever in an EW-AFM gives much greater control of the particle position.  相似文献   

19.
20.
A space-borne optical tweezer apparatus for use with colloidal crystallization experiments has been characterized. The trapping force has been measured as a function of index mismatch between colloidal microspheres and the surrounding fluid and as a function of particle size. This work also presents a method to determine the refractive index of a colloidal microsphere, which is then used to calculate the applied trapping force for the case of an arbitrary background fluid. This is useful for work with dense colloidal suspensions when the usual (e.g., Stokes flow) trap force measurement methods do not apply, as well as microrheological studies of complex soft matter.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号