首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Large strain field near a crack tip in a rubber sheet   总被引:1,自引:0,他引:1  
The distribution of stress-strain near a crack tip in a rubber sheet is investigated by employing the constitutive relation given by Gao (1997). It is shown that the crack tip field is composed of two shrinking sectors and one expanding sector. The stress state near the crack tip is in uniaxial tension. The analytical solutions are obtained for both expanding and shrinking sectors.  相似文献   

2.
This paper deals with strain field near a crack tip in a rubber-like material under plane strain condition. The constitutive relation adopted here is valid for both small and large strain. The asymptotic equations are derived for a shrinking sector and expanding sector. The closed mathematic solution is obtained for the latter while a numerical solution is found for the former. By connecting deformation of the two sectors, the crack tip field character is found.  相似文献   

3.
The asymptotic field near an interface crack tip is analyzed with the fully nonlinear theory. By dividing the crack tip field into narrowing sectors and an expanding sector, the asymptotic equations for the crack tip field are derived and solved. The singular characters of stress and strain near the crack tip are revealed.  相似文献   

4.
The plastic zone of the growing mode III crack in an elastic perfectly plastic solid consists of two sectors in contact with each other. The sector closer to the crack plane, first studied analytically by Chitaley and McClintock (CM), consists of a fan of straight maximum shear stress trajectories that are focused on the crack tip. The other sector, first analyzed numerically by Dean and Hutchinson (DH), is a ‘radial’ fan of straight lines that are not focused at the crack tip or at another common point. In this paper it is shown with use of the dislocation density field that the need that the stress magnitude in the plastic wake be below the yield stress requires the existence of an unfocused fan in the DH sector. It appears unlikely that this result can be obtained without explicit use of dislocations.  相似文献   

5.
This paper considers the plane strain notch-tip filed in a rubber-like material under tension. Based on a new constitutive relation, the asymptotic equations of the near tip field are derived and solved. It is shown that the notch tip field is composed of two narrowing sectors and an expanding sector. The dominant stress and strain near the notch tip are found to be in a state of uniaxial tension.  相似文献   

6.
STRESS-STRAINFIELDNEARTHECRACK-TIPOFANINCOMPRESS RUBBER-LIKE MATERIALWangZhenqing(王振清)ShiShouxia(史守峡)(HarbinEngineeringUniver...  相似文献   

7.
陈少华  李咏芳 《力学学报》2000,32(4):412-419
利用Kuowles与Sternberg提出的非线性弹性大变形应变能函数,对橡胶楔体与刚性缺口接触问题进行大变形渐近分析,推导了楔体尖端场的渐近方程,得到楔体尖端附近的应力应变场及应力的奇异性指数与橡胶楔体角度、刚性缺口角度及材料常数有关的表达式;楔尖附近同一半径上应力分量为常数,同时,利用非线性有限元理论编制了大变形有限元程序,考虑楔体尖端与缺口接触边界条件,计算得到了与分析解一致的结论,当缺口角  相似文献   

8.
An asymptotic solution is given for Mode II dynamic fields in the neighborhood of the tip of a steadily advancing crack in an incompressible elastic—perfectly-plastic solid (plane strain). It is shown that, like for Modes I and III (Gao and Nemat-Nasser, 1983), the complete dynamic solution for Mode II predicts a logarithmic singularity for the strain field, but unlike for those modes which involve no elastic unloading, the pure Mode II solution includes two elastic sectors next to the stress-free crack surfaces. This is in contradiction to the quasi-static solution which predicts a small central plastic zone, followed by two large elastic zones, and then two very small plastic zones adjacent to the stress-free crack faces. The stress field for the complete dynamic solution varies throughout the entire crack tip neighborhood, admitting finite jumps at two shock fronts within the central plastic sector. This dynamic stress field is consistent with that of the stationary crack solution, and indeed reduces to it as the crack growth speed becomes zero.  相似文献   

9.
蔺书田  周志刚  薛焕 《力学学报》1992,24(4):504-510
本文应用激光全息干涉法获得了两种材料Ⅲ型界面裂纹试件的离面位移场,通过试验数据处理求得了裂纹尖端附近位移、应力场强度的控制参量K_(Ⅲ),J值,给出了局部解的适用区域。还研究了两种材料粘结界面处的连续条件,分析了结果的合理性。为了对比和分析界面裂纹问题,还对同种材料试件进行了试验和数据处理。  相似文献   

10.
Summary A plane strain problem for a crack with a frictionless contact zone at the leading crack tip expanding stationary along the interface of two anisotropic half-spaces with a subsonic speed under the action of various loadings is considered. The cases of finite and infinite-length interface cracks under the action of a moving concentrated loading at its faces are considered. A finite-length crack for a uniform mixed-mode loading at infinity is considered as well. The associated combined Dirichlet-Riemann boundary value problems are formulated and solved exactly for all above-mentioned cases. The expressions for stresses and the derivatives of the displacement jumps at the interface are presented in a closed analytical form for an arbitrary contact zone length. Transcendental equations are obtained for the determination of the real contact zone length, and the associated closed form asymptotic formulas are found for small values of this parameter. It is found that independently of the types of the crack and loading, an increase of the crack tip speed leads to an increase of the real contact zone length and the correspondent stress intensity factor. The latter increase significantly for an interface crack tip speed approaching the Ragleigh wave speed.  相似文献   

11.
在线弹性理论中,切口/裂纹结构尖端区域存在奇异应力场,数值方法不易求解。本文建立的扩展边界元法(XBEM)对围绕尖端区域位移函数采用自尖端径向距离 的渐近级数展开式表达,其级数项的幅值系数作为基本未知量,而外部区域采用常规边界元法离散方程。两者方程联立求解可获得切口和裂纹结构完整的位移和应力场。扩展边界元法具有半解析法特征,适用于一般的切口和裂纹结构应力场分析,其解可精细描述从尖端区域到整体结构区域的应力场。作者研制了扩展边界元法程序,文中给出了两个算例,通过计算结果分析,表明扩展边界元法求解切口和裂纹结构应力场的准确性和有效性。  相似文献   

12.
随着复合材料的应用和发展,不同材料组成的界面结构越来越受到人们的重视。界面层两侧材料的性能相异会引起材料界面端奇异性,同时界面和界面附近存在裂纹会引起裂尖处的应力奇异性。因此双材料界面附近的力学分析是比较复杂的。本文建立双材料直角界面模型,在材料界面附近预设初始裂纹,计算了有限材料尺寸对界面应力场及其附近裂纹应力强度因子的影响。运用弹性力学中的 Goursat 公式求得直角界面端在有限尺寸下的应力场以及其应力强度系数。通过叠加原理和格林函数法进一步得到在直角界面端附近的裂纹尖端应力强度因子。计算结果表明,在适当范围内改变材料内裂纹与界面之间的距离,界面附近裂纹尖端的应力强度因子随着裂纹与界面距离的增加而减少,并且逐渐趋于稳定。分析结果可以为预测双材料结构复合材料界面失效位置提供参考。  相似文献   

13.
裂纹垂直于双相介质界面时的应力强度因子   总被引:2,自引:0,他引:2  
本文利用J积分与应力强度因子的关系,采用有限元数值方法研究了当裂纹与双相介质的界面垂直时,其裂纹的近界面端和远界面端的应力强度因子随双相介质参数和裂纹端部到界面的距离的变化规律,同时还分析了当边裂纹逐渐扩展时,应力强度因子的变化特征。  相似文献   

14.
The effect of an external magnetic field on the fracture toughness of magnetostrictive materials has been investigated by determining the local stress fields around the tip of a very slender elliptical flaw embedded in an infinite magnetostrictive plane subjected to magnetic loading, based on the assumption of linear magnetization. In this paper, the above-mentioned analytical approach is extended to develop a small-scale magnetic-yielding model. The magnetic saturation zone is constructed and the distributions of magnetic field and magnetization are obtained around the tip of a slender elliptical crack. Based on the complex potential theory, the stress field is obtained in the vicinity of the tip of the slender elliptical crack by implementing the continuity conditions of displacement and resultant force at the interface between the magnetic saturation and magnetoelastic zones. The stress fields near the tip of the slender elliptical crack are obtained for two kinds of soft ferromagnetic materials each with a small induction magnetostrictive modulus. The theoretical results obtained show that the stresses in the neighborhood of a crack-tip are finite even when the elliptical crack reduces to a sharp crack, and are much smaller than the yield stress or the nominal fracture stress of the material. This suggests that, generally, the magnetic field has no obvious effects on the apparent fracture toughness of soft ferromagnetic materials, which is in agreement with the existing experimental results published in the existing literature. In addition, the theoretical analysis illustrates that no crack is magnetically impermeable, and the corresponding boundary conditions are inappropriate for fracture analysis of soft ferromagnetic materials.  相似文献   

15.
Novel interface deformable bi-layer beam theory is developed to account for local effects at crack tip of bi-material interface by modeling a bi-layer composite beam as two separate shear deformable sub-layers with consideration of crack tip deformation. Unlike the sub-layer model in the literature in which the crack tip deformations under the interface peel and shear stresses are ignored and thus a “rigid” joint is used, the present study introduces two interface compliances to account for the effect of interface stresses on the crack tip deformation which is referred to as the elastic foundation effect; thus a flexible condition along the interface is considered. Closed-form solutions of resultant forces, deformations, and interface stresses are obtained for each sub-layer in the bi-layer beam, of which the local effects at the crack tip are demonstrated. In this study, an elastic deformable crack tip model is presented for the first time which can improve the split beam solution. The present model is in excellent agreements with analytical 2-D continuum solutions and finite element analyses. The resulting crack tip rotation is then used to calculate the energy release rate (ERR) and stress intensity factor (SIF) of interface fracture in bi-layer materials. Explicit closed-form solutions for ERR and SIF are obtained for which both the transverse shear and crack tip deformation effects are accounted. Compared to the full continuum elasticity analysis, such as finite element analysis, the present solutions are much explicit, more applicable, while comparable in accuracy. Further, the concept of deformable crack tip model can be applied to other bi-layer beam analyses (e.g., delamination buckling and vibration, etc.).  相似文献   

16.
Reanalyzed in detail is the stress and strain distribution near the tip of a Mode I steadily growing crack in an elastic and perfectly-plastic material. The crack tip region is divided into five angular sectors, one of which is singular in character and represents a rapid transition zone that becomes a line of strain discontinuity in the limit as crack tip is approached. It is shown for an incompressible material (ν=0.5) under plane strain that the local strain in all the angular sectors possesses the same logarithm singularity, i.e., In r where r is the radial distance measured from the crack tip. This result also prevails for the compressible material ( v < 0.5) and resolves a long standing controversy concerning the strain singularity in the sector just ahead of the crack tip.  相似文献   

17.
An elastic constitutive model is proposed to describe the mechanical property of bio-materials that possesses strain limits. Analytical solution for the Mode I crack tip behavior is obtained. The tensile strain limit can be reached by approaching the crack tip in any direction while the compression strain limit can only be reached in two sectors of the crack tip domain.  相似文献   

18.
An exact asymptotic analysis is presented of the stress and deformation fields near the tip of a quasistatically advancing plane strain tensile crack in an elastic-ideally plastic solid. In contrast to previous approximate analyses, no assumptions which reduce the yield condition, a priori, to the form of constant in-plane principal shear stress near the crack tip are made, and the analysis is valid for general Poisson ratio ν. Specific results are given for ν = 0.3 and 0.5, the latter duplicating solutions in previous work by L.I. Slepyan, Y.-C. Gao and the present authors. The crack tip field is shown to divide into five angular sectors of four different types ; in the order in which these sweep across a point in the vicinity of the advancing crack, they are : two plastic sectors which can be described asymptotically (i.e., as r → 0, where r is distance from the crack tip) in slip-line terminology as ‘constant stress’ and ‘centered fan’ sectors, respectively ; a plastic sector of non-constant stress which cannot be described asymptotically in terms of slip lines; an elastic unloading sector; and a trailing plastic sector of the same type as that directly preceding the elastic sector. Further, these four different sector types constitute the full set of asymptotically possible solutions at the crack tip. As is known from prior work, the plastic strain accumulated by a material point passing through such a moving ‘centered fan’ sector is O(ln r) as r → 0 ; it is proved in the present work that the plastic strain accumulated by a material point passing through the ‘constant stress’ sector ahead of a growing crack must be less singular than In r as r → 0. As suggested also in earlier studies, the rate of increase of opening gap δ at a point currently at a distance r behind, but very near, the crack tip is given for crack advance under contained yielding by
δ? = αJ?σ0+β(σ0E)a? ln(Rr)
where a is crack length, σ0 is tensile yield strength, E is Young's modulus, J is the value of the J-integral taken in surrounding elastic material, and the parameters α and R are undetermined by the asymptotic analysis. The exact solution for ν = 0.3 gives β = 5.462, which agrees very closely with estimates obtained from finite element solutions. An approximate analysis based on use of slip line representations in all plastic sectors is outlined in the Appendix.  相似文献   

19.
The dislocation simulation method is used in this paper to derive the basic equations for a crack perpendicular to the bimaterial interface in a finite solid. The complete solutions to the problem, including the T stress and the stress intensity factors are obtained. The stress field characteristics are investigated in detail. It is found that when the crack is within a weaker material, the stress intensity factor is smaller than that in a homogeneous material and it decreases when the distance between the crack tip and interface decreases. When the crack is within a stiffer material, the stress intensity factor is larger than that in a homogeneous material and it increases when the distance between the crack tip and interface decreases. In both cases, the stress intensity factor will increase when the ratio of the size of a sample to the crack length decreases. A comparison of stress intensity factors between a finite problem and an infinite problem has been given also. The stress distribution ahead of the crack tip, which is near the interface, is shown in details and the T stress effect is considered.  相似文献   

20.
The fracture problems near the interface crack tip for mode Ⅱ of double dissimilar orthotropic composite materials are studied. The mechanical models of interface crack for mode Ⅱ are given. By translating the governing equations into the generalized bi-harmonic equations,the stress functions containing two stress singularity exponents are derived with the help of a complex function method. Based on the boundary conditions,a system of non-homogeneous linear equations is found. Two real stress singularity exponents are determined be solving this system under appropriate conditions about himaterial engineering parameters. According to the uniqueness theorem of limit,both the formulae of stress intensity factors and theoretical solutions of stress field near the interface crack tip are derived. When the two orthotropic materials are the same,the stress singularity exponents,stress intensity factors and stresses for mode Ⅱ crack of the orthotropic single material are obtained.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号