首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
V2O5-WO3/TiO2催化剂目前已广泛用于电厂和工业锅炉燃烧废气脱硝,但燃烧原料煤及石油中含有的杂质元素碱金属与碱土金属元素可吸附在催化剂上,不仅会减少催化剂酸性位的数量,还会与催化活性元素结合生成惰性物种,导致催化剂失活。因此,已有许多有关钒钨钛催化剂碱中毒的研究,从催化剂的氧化还原能力、酸性位损失及表面孔结构等方面进行了讨论。但这些研究大多集中在碱中毒对活性组分V2O5的影响及中毒催化剂的活性变化,很少涉及催化剂中WO3的作用,也缺乏有关不同活性元素与钾盐反应的实验证据。本文采用过量浸渍法制备了不同钒和钨含量的钒钨钛催化剂,研究了氯化钾对其氨法选择性催化还原(NH3-SCR)活性的失活效应。利用感应耦合等离子体、N2吸附、拉曼光谱、H2程序升温还原、NH3吸附红外光谱和NH3氧化活性等手段对新鲜和中毒催化剂的性质进行了表征,特别探讨了V2O5和WO3对催化剂抗碱中毒能力的贡献。
  催化剂活性测试结果表明, V2O5含量越高,活性温度窗口越宽,而且含有WO3的三元催化剂活性高于V2O5/TiO2二元催化剂。催化剂的BET比表面积和孔结构取决于TiO2载体,随活性组分配比变化不大,说明催化剂物理结构性质并非影响活性的主要因素。原位红外光谱及H2程序升温还原测试结果表明,随V2O5含量提高,催化剂表面Br?nsted酸性位数量及氧化还原能力提高。作为反应的主要活性物种, V2O5在碱中毒处理后变成惰性的偏钒酸钾KVO3,使催化剂中Br?nsted酸性位减少,热稳定性下降,并削弱了催化剂的氧化还原能力,因此低钒含量的催化剂容易严重中毒失活。在高钒负载量(3%)时,部分V2O5在碱中毒后得以保留,从而使催化剂保持了一定的脱硝催化活性。
  另外, WO3能给催化剂表面提供热稳定的酸性位,虽然WO3自身的氧化还原能力差,但其能改善V2O5的分散性,从而提高V2O5-WO3/TiO2催化剂的活性。除此之外, WO3在催化剂碱中毒过程中还能扮演牺牲剂,与钾反应生成钨酸钾(K2WO4),即在V2O5与钾离子结合形成KVO3的同时,部分WO3也会与钾反应形成K2WO4,可以使三元催化剂保留更多的活性V物种。因此,在所研究的催化剂中,高钒负载量的V2O5-WO3/TiO2催化剂表现出最好的抗碱中毒能力。
  活性影响因素分析表明,对于新鲜催化剂,其表面吸附的NH3量足够多,催化剂活性与表面酸性相关度不大,脱硝效率主要取决于催化剂的氧化还原能力。但是,对于碱中毒处理后的催化剂,其表面吸附NH3的能力大大削弱,这时脱硝效率除了受催化剂氧化还原能力影响,在很大程度上也依赖于催化剂的表面酸性。  相似文献   

2.
低温水热法制备硅胶负载型二氧化钛催化剂   总被引:4,自引:0,他引:4  
TiO2作为一种优良的光催化材料,能够降解有机物,起到抗菌防污的作用,其在工业上的潜在应用已吸引众多研究者的普遍关注和深入研究[1-3]。为了进一步提高它的光催化活性,研究者试图运用各种方法和技术对纯TiO2进行改进。负载[3]是其中常用方法之一。对于无负载的二氧化钛,由于本  相似文献   

3.
4.
The capability of laser induced breakdown spectrometry (LIBS) for vanadium determination in a xV-2TiO(2)-SiO(2) catalyst is presented. The microplasma was generated onto the sample surface using a pulsed Nd:YAG laser operating in the second harmonic (532 nm). Laser produced plasmas were collected and detected using a charge-coupled device (CCD). In order to minimize the complex spectral interferences of emission lines and matrix effects a wide spectral range (210-660 nm) was studied. The focusing of the laser beam on the surface was optimized to improve the signal-to-background ratio, and consequently the limit of detection. The analytical lines selected were used to evaluate the calibration curve. The detection limit for V was estimated to be 38 mug g(-1) in 2TiO(2)-SiO(2). The method precision expressed as relative standard deviation (RSD) was better than 6% in the concentration range 200-1000 mug g(-1).  相似文献   

5.
Catalytic decomposition of benzene was carried out on various metal oxides. Pure titania is not effective in decomposing 99% of benzene even at temperature of 600°C. Addition of vanadia improves its ability to decompose benzene. Titania-vanadia catalyst can decompose 99% of benzene at 410°C. The combination of titania/vanadia/tungsten oxide is more effective. It can decompose 99% of benzene at as low as 355°C.  相似文献   

6.
Molybdenum oxide supported on alumina and titania prepared by three different methods (impregnation, calcination and hydrothermal treatment of mechanical mixtures), have been studied by laser Raman spectroscopy. Different oxomolybdenum species have been detected depending on the method of preparation and on the calcination conditions. Heptamolybdate and polymolybdate species were found in the impregnated and in the uncalcined, hydrothermally treated samples supported on alumina and titania, respectively, whereas polymolybdate species were formed on the surface of alumina when the mechanical mixtures and the hydrothermally treated samples were calcined in the presence of water vapour. However, two kinds of species, polymolybdate and mono-oxomolybdenum, were found in the case of the mechanical mixtures and the hydrothermally treated samples calcined in the presence of water vapour when supported on titania.  相似文献   

7.
The interfacial chemistry of the impregnation step involved in the preparation of nickel catalysts supported on titania is presented. Several methodologies based on deposition data, pH measurements, potentiometric mass titrations, and microelectrophoresis have been used in conjunction with diffuse reflectance UV/Vis/NIR spectroscopy, simulations, and semiempirical quantum chemical calculations. Three mononuclear inner-sphere complexes were formed at the compact layer of the "titania/electrolyte solution" interface: A monosubstituted, dihydrolyzed complex above a terminal oxo group, a disubstituted, dihydrolyzed complex above two terminal adjacent oxo groups, and a disubstituted, nonhydrolyzed complex above one terminal and one bridging adjacent oxo groups. The monosubstituted, dihydrolyzed complex predominates. The contribution of the disubstituted configurations is also important at very low Ni(II) surface concentration, but it decreases as the Ni(II) surface concentration increases. In addition, bi- and trinuclear inner-sphere complexes were formed. The receptor site involves one bridging and two terminal oxo groups in the first case and two bridging and three terminal oxo groups in the second case. The relative surface concentrations of these configurations increase initially with Ni(II) surface concentration and then remain practically constant. The understanding of these interfacial processes at a molecular level is very important to shift the catalytic synthesis from an art to a science as well as to obtain strict control of the impregnation step and, to some extent, of the whole preparative sequence. This study is very relevant to the synthesis of submonolayer/monolayer nickel catalysts supported on TiO(2) following equilibrium deposition filtration (otherwise called equilibrium adsorption).  相似文献   

8.
Titanium complexes with chelating alkoxide ligands [TiCp*(O(2)Bz)(OBzOH)] (1) and [TiCp*(Me)((OCH(2))(2)Py)] (2) were synthesised by reaction of [TiCp*Me(3)] (Cp*=eta(5)-C(5)Me(5)) with 2-hydroxybenzyl alcohol ((HO)(2)Bz) and 2,6-pyridinedimethanol ((HOCH(2))(2)Py), respectively. Complex 1 reacts with [(M(mu-OH)(cod))(2)] (M=Rh, Ir) to yield the early-late heterobimetallic complexes [TiCp*(O(2)Bz)(2)M(cod)] [M=Rh (3), Ir (4)]. Carbon monoxide readily replaces the COD ligand in 3 to give the rhodium dicarbonyl derivative [TiCp*(O(2)Bz)(2)Rh(CO)(2)] (5). Compound 2 reacts with [(M(mu-OH)(cod))(2)] (M=Rh, Ir) with protonolysis of a Tibond;Me bond to give [TiCp*((OCH(2))(2)Py)(mu-O)M(cod)] [M=Rh (6), Ir (7)]. The molecular structures of complexes 3, 5 and 7 were established by single-crystal X-ray diffraction studies.  相似文献   

9.
Low temperature oxygen chemisorption (LTOC) has been applied to characterize a series of TiO2 and ZrO2 supported Mo-oxide catalysts. The monolayer coverage of the surface is completed when the Mo loading reaches 6% and 4% on the TiO2 and ZrO2 supports, respectively. The results are explained with the help of a Patch model of the Mo-oxide phase.
Mo- TiO2 ZrO2 . Mo TiO2 ZrO2 6% 4%, . Patch Mo- .
  相似文献   

10.
A facile and rapid microwave irradiation method was explored for the synthesis of bismuth phosphate (BiPO(4)) nanostructures with various morphologies and phases in different solvents. The BiPO(4) products were characterized by powder X-ray diffraction (XRD), Raman spectroscopy, scanning electron microscopy (SEM), transmission electron microscopy (TEM), high resolution transmission electron microscopy (HRTEM), UV-vis diffuse reflection spectroscopy (DRS). The effect of the solvents on the formation of the BiPO(4) nanostructures was discussed on the basis of experimental results. The different BiPO(4) nanostructures exhibited different optical properties, BET surface areas and photocatalytic activities on the degradation of methyl orange (MO) under UV and visible light irradiation. The experimental results suggested that the photocatalytic activity was closely relative with the crystalline phase and band gap of BiPO(4). Hexagonal BiPO(4) nanoparticles with narrow band gap showed the highest photocatalytic performance.  相似文献   

11.
Preparation and characterization of silica supported Au-Pd model catalysts   总被引:1,自引:0,他引:1  
Au-Pd bimetallic model catalysts were synthesized as alloy clusters on SiO2 ultrathin films under ultrahigh vacuum (UHV) conditions. The surface composition and morphology were characterized with low energy ion scattering spectroscopy (LEIS), infrared reflection absorption spectroscopy (IRAS), and temperature programmed desorption (TPD). Relative to the bulk, the surface of the clusters is enriched in Au. With CO as a probe, IRAS and TPD were used to identify isolated Pd sites at the surface of the supported Au-Pd clusters. Ethylene adsorption and dehydrogenation show a clear structure-reactivity correlation with respect to the structure/composition of these Au-Pd model catalysts.  相似文献   

12.
吴自力 《催化学报》2014,35(10):1591-1608
探究负载金属氧化物的结构是确立催化剂结构和催化性能之间相互关系的首要条件. 在众多表征技术中,多波长拉曼光谱结合了共振拉曼和由不同波长激发的非共振拉曼,不仅在识别负载金属氧化物团簇的结构,而且在定量方面已经成为强有力的工具. 本文以两个负载氧化钒体系(VOx/SiO2,VOx/CeO2)为例,阐述了如何利用该技术研究活性氧化物团簇的多相结构,并理解氧化物团簇和载体之间复杂的相互作用. 由多波长拉曼光谱得到的定性和定量信息能为设计更有效的负载金属氧化物催化剂提供基本的依据.  相似文献   

13.
Abstact  The reduction process of silica supported cobalt catalyst was studied by thermal analysis technique. The reduction of the catalyst proceeds in two steps:
which was validated by the TPR and in-situ XRD experiments. The kinetic parameters of the reduction process were obtained with a comparative method. For the first step, the activation energy, E a, and the pre-exponential factor, A, were found to be 104.35 kJ mol−1 and 1.18·106∼2.45·109 s−1 respectively. The kinetic model was random nucleation and growth and the most probable mechanism function was found to be f(α)=3/2(1−α)[−ln(1−α)]1/3 or in the integral form: g(α)=[−ln(1−α)]2/3. For the second step, the activation energy, E a, and the pre-exponential factor, A, were found to be 118.20 kJ mol−1 and 1.75·107∼2.45 · 109s−1 respectively. The kinetic model was a second order reaction and the probable mechanism function was f(α)=(1−α)2 or in the integral form: g(α)=[1−α]−1−1.  相似文献   

14.
Nickel catalysts supported on various carbon materials such as multiwall carbon nanotubes, shortened length carbon nanotubes, graphite and amorphous carbon were synthesized, characterized and tested in cyclohexene hydrogenation reaction. We have found that carbon nanotube supports are superior to graphite and amorphous carbon both in terms of catalytic activity and stability.  相似文献   

15.
A nanosized Ce0.5Mn0.5O1.5 powder was successfully synthesized by macromolecule surfactant modified method and then it was used as the cordierite honeycomb washcoat of VOCs combustion catalysts. The effect of Ce-Mn-O powder with different Ce/Mn molar ratio on the catalytic activity and the cohesive ability of washcoat on the cordierite honeycomb substrate was also investigated. The structure and catalytic properties of Ce0.5Mn0.5O1.5 washcoat were characterized by X-ray powder diffraction (XRD), transmission electron microscopy (TEM), atomic force microscopy (AFM), differential thermal analysis and thermo-gravimetric analysis (TG/DTA), and N2 adsorption and desorption techniques. The results indicated that the Ce0.5Mn0.5O1.5 powder belongs to a novel washcoat with the advantages of strong cohesiveness, high surface area and without agglomeration even after 1000°C calcination. The total oxidation temperature for toluene, acetone and ethyl acetate over the 0.1 wt % Pd/Ce0.5Mn0.5O1.5/cordierite honeycomb catalysts was at 200, 220 and 220°C, respectively. Compaired with the catalysts without Ce0.5Mn0.5O1.5 washcoat, the catalyst with Ce0.5Mn0.5O1.5 as washcoat on the cordierite honeycomb could improve the dispersion of PdO and shows a good catalytic activity for toluene, acetone and ethyl acetate.  相似文献   

16.
Pd nanoparticles on tungsten carbides modified multiwalled carbon nanotubes (Pd-WC/MWCNT) catalysts have been prepared by an intermittent microwave heating (IMH) technique for the first time. The Pd-WC/MWCNT catalysts are evaluated and show an improved kinetics for the ethanol oxidation. It is recognized that the significant increase in the catalytic activity for ethanol oxidation on Pd-WC/MWCNT is attributed to both the synergistic effect between Pd nanoparticles and the WC support and the structure effect of the MWCNT. This type catalyst can be universally used as the oxygen reduction catalyst in fuel cells and sensors both in alkaline and acidic solutions.  相似文献   

17.
Traditional catalysts (prepared by the reduction of a salt) of supported Cr, Mo, and W compounds have low activities for the hydrogenation of alkenes. This low activity is partly due to the difficulty in fully reducing these catalysts. The use of the zero-valent complexes Cr(CO)6, Mo(CO)6, and W(CO)6 for catalyst synthesis is described. Proper activation can yield well-dispersed and low-valent catalysts primarily containing subcarbonyl complexes which are far more active than traditional catalysts of these elements for the hydrogenation of alkenes.  相似文献   

18.
X-ray photoelectron spectroscopy (ESCA) has been used in a study of CO and O2 chemisorbed on a polycrystalline tungsten sample. Working under ultra-high vacuum conditions, the surface was cleaned and then covered with known monolayer and fractional monolayer quantities of adsorbed CO and O2. The O(ls) and C(ls) spectral features were detected, and the influence of an adsorbed layer on the tungsten spectral features was determined. A chemical shift of 3.4 eV in the O(ls) line from chemisorbed CO is related to the different modes of bonding of CO to tungsten. A model calculation of the photoelectron yields expected from an adsorbed monolayer is in good agreement with the experimental results.  相似文献   

19.
Single-walled carbon nanotube samples produced in the presence of different combinations of metal catalysts have been studied by resonant Raman spectroscopy. The diameter distribution of different samples has been determined by analysis of the laser excitation energy dependence of the tangential modes associated with metallic nanotubes. These modes are resonantly enhanced over a narrow range of the exciting energies, which shifts for different samples. The Raman cross-section expression has been used to fit the experimental Raman excitation profiles. This procedure was used to determine the mean value and the width of the distribution of diameters within each sample.  相似文献   

20.
A series of materials WO3/Zr-SBA-15 were synthesized by modifying zirconium-incorporated SBA-15 mesoporous molecular sieve with various loadings of tungsten oxide, followed by calcining at different temperatures. The structures and the surface states of these materials were determined by XRD, TEM, N2 adsorption–desorption and Raman spectroscopy, while the surface acidities were characterized by FT-IR spectroscopy of pyridine adsorption, NH3-TPD, and the Hammett indicator method. To evaluate the catalytic activities of the prepared materials, the benzoylation of anisole was chosen as the model reaction. All the results reveal that the synthesized samples are strong solid acids, even solid superacids under some conditions, with uniform mesoporous structure and high surface area. The dispersion state of the supported WO3, which depends on the WO3 loading and the calcination temperature, has a direct influence on the acidity and catalytic activity of the materials. Moreover, the high acid strength is attributed to the WO bond nature of the complex formed by the interaction between WO3 and the surface of Zr-SBA-15.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号