首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 390 毫秒
1.
Phase modulated pulses for deuterium recoupling in (2)H-(13)C REDOR NMR spectroscopy have been introduced to improve dephasing of the detected (13)C nuclei. The deuterium inversion properties of phase modulated recoupling pulses have been studied experimentally on l-alanine-2-d(1) and theoretically using average Hamiltonian theory and exact simulations of the equation of motion of the density matrix. The best (13)C dephasing was observed when XYXYX (PM5) deuterium recoupling pulses were applied. A comparison to the 90 degrees -180 degrees -90 degrees (CPL) composite pulse scheme revealed an improvement of recoupling on the order of 2.5. Simple CW recoupling pulses of the same length of PM5 and CPL pulses showed the weakest (13)C dephasing. Simulations have shown that the (2)H recoupling efficiency of PM5 REDOR experiments approach the very efficient REAPDOR results. However, in our case a REAPDOR study of l-alanine-2-d(1) resulted in a significant decrease of the (13)C signal intensity due to pulse imperfections of (13)C pi-pulses. The new PM5-REDOR technique has been employed to study the torsion angle between C1/2 and C5 in ethylmalonic acid-4-d(2).  相似文献   

2.
Use of adiabatic pulses in broadband inversion and decoupling is well known. Replacement of the rectangular pi pulses in the INEPT and rev-INEPT parts of the HSQC and gHSQC experiments with adiabatic pulses substantially improves the sensitivity of these experiments. However, modulation of cross peak intensity in multiplicity-edited HSQC or gHSQC experiments can be quite severe. These modulations arise during the multiplicity-editing periods due to the inefficient refocusing of the spin-echo caused by the mismatch of the echo delay with the one-bond coupling constant. These modulations (which we call echo modulations) are field strength (and hence spectral width) independent. Use of adiabatic pulses with the inversion sweep synchronized to the 1H-13C coupling constant range typically observed in a 13C spectrum will provide substantial improvement in sensitivity. The inversion profile problems associated with rectangular pi pulses can be moderately compensated by composite pulse schemes and these schemes could prove to be reasonable alternatives to adiabatic pulses. However, the adiabatic sweep provides a unique method to compensate the echo modulations for multiplicity-edited experiments. The origin and the compensation of refocusing inefficiency with synchronized inversion sweep (CRISIS) method to minimize these modulations is described.  相似文献   

3.
When adiabatic fast passage is used to flip nuclear spins, sites with different chemical shifts are inverted at different times, causing refocusing errors. By mapping the phase evolution diagrams, we show that these effects can be accurately compensated with matched pairs of adiabatic pulses, either opposed or in the same sense, depending on the application. Applied to well-known heteronuclear polarization transfer experiments such as INEPT and HSQC, the requisite evolution of J-vectors is achieved irrespective of chemical shift or the duration of the adiabatic sweeps. By replacing conventional 180 degrees pulses, these new adiabatic sequences offer an order of magnitude improvement in effective bandwidth for the X-spins. Alternatively the experiments can be carried out with significantly reduced radiofrequency power. One- and two-dimensional spectra of (13)C in 13-cis-retinal at 600MHz have been used to demonstrate these advantages.  相似文献   

4.
Rotational-echo double resonance (REDOR) is a magic-angle spinning technique for measuring heteronuclear dipolar couplings. Rotor-synchronized pi pulses recouple the dipolar interaction. The accuracy of a REDOR determination of distance or orientation depends totally on the quality of the dephased (recoupled) and full-echo spectra. We present a scheme for measuring and compensating for the effects of pulse imperfections in REDOR experiments. No assumptions are made about the quality of the pi pulses, and no pulses are added or taken away in implementing the compensation for incomplete REDOR dephasing by imperfect pi pulses.  相似文献   

5.
We describe a simple method to compensate for pulse-angle errors in rotational-echo double resonance (REDOR) experiments for determining heteronuclear distances in solids. By using composite 180 degrees pulses on the unobserved dephasing spin and EXORCYCLE for the single pi pulse on the observed channel, the REDOR curve becomes much less sensitive to pulse-angle errors. Both improvements are demonstrated by experiments on the model compound, (15)N, (13)Calpha -labeled N-t-BOC-glycine, and are confirmed by numerical simulations. The advantage of EXORCYCLE is also shown analytically using the product operator formalism. The proposed simple schemes compensate for unavoidable pulse-angle errors that arise, for example, from radiofrequency field inhomogeneity. They also make REDOR experiments more accurate and robust for low-sensitivity samples where direct pulse-length calibration is difficult.  相似文献   

6.
A numerical analysis of the sech/tanh (or hyperbolic secant) and tanh/tan adiabatic inversion pulses provides a set of master equations for each type of pulse that guarantee their optimal implementation over a wide range of practical conditions without needing to further simulate the inversion profiles of the pulses. These simple equations determine the necessary maximum RF amplitude (RF(max)) required for a preselected degree of inversion across a chosen effective bandwidth (bw(eff)) and for a chosen pulse length (T(p)). The two types of pulse function differently: The sech/tanh pulse provides a rectangular inversion profile with bw(eff) being a large fraction of the adiabatic frequency sweep (bwdth), whereas for tanh/tan bw(eff) is < or =bwdth/20. If the quality of inversion is defined as the minimum allowable extent of inversion, iota(bw), at the boundaries of bw(eff), two basic linear equations are found for both types of pulse and these are of the form (RF(max)T(p))(2)=m(1)T(p)bwdth+c(1) and T(p)bwdth=m(3)T(p)bw(eff)+c(3). The different behavior of the two pulses is expressed as different dependencies of the slopes m(n) and intercepts c(n) on iota(bw) and allowances are made for second order effects within these equations. The availability of these master relationships enables a direct comparison of the two types of adiabatic pulse and it is found that tanh/tan requires about half the pulse length of an equivalent sech/tanh pulse and also has the advantage of being less sensitive to the effects of scalar coupling. In contrast sech/tanh delivers about half the total RF power of an equivalent tanh/tan pulse. It is expected that the forms of these two basic linear equations are generally applicable to adiabatic inversion pulses and thus define the concept of "linear adiabaticity." At low values of T(p)bwdth or T(p)bw(eff) the linear equations no longer apply, defining a region of "partial adiabaticity." Normal adiabatic pulses in the middle of this partial region are more efficient in terms of RF(max) or T(p) but are moderately less tolerant to RF inhomogeneity. A class of numerically optimized pulses has recently been developed that specifically trades adiabaticity in an attempt to gain RF(max) or T(p) efficiency. In comparison to normal adiabatic pulses implemented under optimal conditions, these new partially adiabatic pulses show only marginal improvements; they are restricted to single values of T(p)bw(eff), and they are vastly less tolerant to RF inhomogeneity. These comparisons, and direct comparisons between any types of inversion pulse, adiabatic or otherwise, can be made using plots of (RF(max)T(p))(2) or (Total Power) T(p) versus T(p)bw(eff).  相似文献   

7.
We have developed a novel variant of REDOR which is applicable to multiple-spin systems without proton decoupling. The pulse sequence is constructed based on a systematic time displacement of the pi pulses of the conventional REDOR sequence. This so-called time displacement REDOR (td-REDOR) is insensitive to the effect of homonuclear dipole-dipole interaction when the higher order effects are negligible. The validity of td-REDOR has been verified experimentally by the P-31{C-13} measurements on glyphosate at a spinning frequency of 25 kHz. The experimental dephasing curve is in favorable agreement with the simulation data without considering the homonuclear dipole-dipole interactions.  相似文献   

8.
An experimental strategy has been developed for measuring multiple dipole-dipole interactions in inorganic compounds using the technique of rotational echo double resonance (REDOR) NMR. Geometry-independent information about the dipole couplings between the observe nuclear species S (arbitrary quantum number) and the heteronuclear species I (spin-12) can be conveniently obtained from the experimental curve of DeltaS/S(0) versus dipolar evolution time by limiting the analysis to the initial data range 0 < delta S/S(0) < 0.30. Numerical simulations have been carried out on a three-spin system of type SI(2) in order to assess the effect of the I-I homonuclear dipole-dipole coupling and the influence of experimental imperfections such as finite pulse length and misadjustments of the 180 degrees pulses applied to the I-spin species. The simulations show further that within the initial data range the effects of such misadjustments can be internally compensated by a modified sequence having an additional 180 degrees pulse on the I channel in the middle of the dipolar evolution periods. Experimental (27)Al?(31)P? REDOR results on the multispin systems Al(PO(3))(3), AlPO(4), [AlPO(4)](12)(C(3)H(7))(4)NF, and Na(3)PO(4) confirm the general utility of this approach. Thus, for applications to unknown systems the compensation strategy obviates calibration procedures with model compounds.  相似文献   

9.
Heteronuclear dipolar recoupling with rotational-echo double-resonance (REDOR) is investigated in the rapid magic-angle spinning regime, where radiofrequency irradiation occupies a significant fraction of the rotor period (10-60%). We demonstrate, in two model (13)C-(15)N spin systems, [1-(13)C, (15)N] and [2-(13)C, (15)N]glycine, that REDOR DeltaS/S(0) curves acquired at high MAS rates and relatively low recoupling fields are nearly identical to the DeltaS/S(0) curve expected for REDOR with ideal delta-function pulses. The only noticeable effect of the finite pi pulse length on the recoupling is a minor scaling of the dipolar oscillation frequency. Experimental results are explained using both numerical calculations and average Hamiltonian theory, which is used to derive analytical expressions for evolution under REDOR recoupling sequences with different pi pulse phasing schemes. For xy-4 and extensions thereof, finite pulses scale only the dipolar oscillation frequency by a well-defined factor. For other phasing schemes (e.g., xx-4 and xx-4) both the frequency and amplitude of the oscillation are expected to change.  相似文献   

10.
11.
We report pulse sequences for the sensitivity enhancement of magic-angle spinning and multiple-quantum magic-angle spinning spectra of spin-72 systems. Sensitivity enhancement is obtained with the use of fast amplitude-modulated (FAM) radiofrequency pulses. In one-dimensional magic-angle spinning experiments, signal enhancement of 3 is obtained by a FAM pulse followed by a soft 90 degrees pulse. In two-dimensional multiple-quantum magic-angle spinning experiments, FAM pulses are used for both the excitation of multiple-quantum coherences and for their conversion into observable single-quantum coherences. The observed signal enhancements are 2.2 in 3Q experiments, 3.1 in 5Q experiments, and 4.1 in 7Q experiments, compared to the conventional two-pulse scheme. The pulse schemes are demonstrated on the 45Sc NMR of Sc2(SO4)3 x 5H2O and the 139La NMR of LaAlO3. We also demonstrate the generation of FAM pulses by double-frequency irradiation.  相似文献   

12.
A new technique is presented for generating myocardial tagging using the signal intensity minima of the transition zones between the bands of 0 degrees and 360 degrees rotations, induced by a tandem of two adiabatic delays alternating with nutations for tailored excitation (DANTE) inversion sequences. With this approach, the underlying matrix corresponds to magnetization that has experienced 0 degrees or 360 degrees rotations. The DANTE sequences were implemented from adiabatic parent pulses for insensitivity of the underlying matrix to B(1) inhomogeneity. The performance of the proposed tagging technique is demonstrated theoretically with computer simulations and experimentally on phantom and on the canine heart, using a surface coil for both RF transmission and signal reception. The simulations and the experimental data demonstrated uniform grid contrast and sharp tagging profiles over a twofold variation of the B(1) field magnitude.  相似文献   

13.
We present the experimental demonstration of a novel, efficient, and selective technique to prepare population inversion. The technique is an extension of Stark-chirped rapid adiabatic passage (SCRAP), i.e., SCRAP among three states. In this process a Lambda-type quantum system is driven by two laser pulses, the pump and Stokes pulses, which are appropriately detuned from transition frequencies. A third laser pulse induces a dynamic Stark shift in the upper energy level, and the timing of all three pulses is controlled in order to prepare population inversion between the two lower states in the Lambda-type level scheme. Our data on population transfer in nitric oxide (NO) molecules clearly show that SCRAP among three states provides an advantageous alternative to such techniques as stimulated Raman adiabatic passage.  相似文献   

14.
A method is presented for the calculation of REDOR dephasing for specifically labeled membrane-spanning peptides in uniformly aligned lipid bilayers under magic angle oriented sample spinning (MAOSS) conditions. Numerical simulations are performed for dephasing of (13)C signal by (15)N when the labels are placed in an alpha-helical peptide at the carbonyl of residue (i) and amide nitrogen of residue (i + 2) to show the dependency of REDOR echo intensity on the peptide tilt angle relative to the membrane normal. The approach was applied to the labeled transmembrane domain of phospholamban ([(15)N-Leu(37), (13)C-Leu(39)]PLBTM) incorporated into dimyristoylphosphatidylcholine bilayers. The dephasing observed for a random membrane dispersion showed that the peptide was alpha-helical in the region including the two labels, and dephasing in oriented membranes showed that the peptide helix was tilted by 25 degrees +/- 7 degrees relative to the bilayer normal. These results agree with those obtained by other spectroscopic methods.  相似文献   

15.
The conditions necessary to obtain multiple adiabatic population inversion at different frequencies in a two-level system are defined. It is shown how any pulse that produces adiabatic inversion in a single frequency band can be modified to become a multiband adiabatic inversion pulse. Using Floquet formalism, the interaction between the different inversion bands is described and shown to create effective nonlinear irradiation fields. By controlling the reference phase of the single-inversion-frequency-band pulses, these effective irradiation fields can be minimized or canceled. These pulses can be used for multiple selective excitation or selective population inversion in coherent spectroscopy. NMR experiments confirming the theoretical predications are shown. The experimental results agree very well with the theoretical predictions.  相似文献   

16.
The 19F-13C heteronuclear single quantum coherence (HSQC) experiment is vital for the structural elucidation of polyfluorinated organic species, yet its sensitivity and phaseability are limited by difficulties in uniform excitation of the widely disperse 19F spectral window. Adiabatic pulses of different types have previously been employed to generate effective π pulses for inversion and refocussing, but a systematic comparison of various adiabatic and other inversion pulses has not been published. In this work, it was observed that the use of a broadband inversion pulse (BIP) during the t 1 evolution period resulted in properly phaseable spectra for experiments optimized to detect 1 J CF, in contrast to CHIRP or WURST adiabatic pulses. For the INEPT and reverse-INEPT transfer segments of the HSQC, optimal sensitivity for resonances distant from the transmitter frequency was afforded by optimized universal rotation (BURBOP) or CHIRP pulses. In HSQC experiments with delays optimized for two-bond correlations, only the use of BURBOP pulses in INEPT and reverse-INEPT sequences afforded spectra cleanly phaseable across the F 2 and F 1 spectral windows. This observation is supported by off-resonance pulsed field gradient spin-echo experiments.  相似文献   

17.
A new experiment for selective determination of the relaxation rates of fast relaxing NMR signals is presented. The experiment is derived from the conventional inversion recovery experiment by substituting the 180 degrees inversion pulse of this experiment with a signal eliminating relaxation filter (SERF) consisting of three 180 degrees pulses separated by two variable delays, Delta1 and Delta2. The SERF experiment allows a selective suppression of signals with relaxation rates below a given limit while monitoring the relaxation of faster relaxing signals. The experiment was tested on a sample of 20% oxidized plastocyanin from Anabaena variabilis, where the fast exchange of an electron between the reduced (diamagnetic) and the oxidized (paramagnetic) form results in a series of average signals with widely different relaxation rates. To ensure an optimum extraction of information from the experimental data, the relaxation rates were obtained from the SERF experiment by a simultaneous analysis of all the FIDs of the experiment using a fast linear prediction model method developed previously. The reliability of the relaxation rates obtained from the SERF experiment was confirmed by a comparison of the rates with the corresponding rates obtained from a conventional inversion recovery experiment.  相似文献   

18.
Using the Anderson–Weiss (AW) formalism, analytical expressions of the NMR signal are obtained for the following magic-angle spinning (MAS) experiments: total suppression of sidebands (TOSS); phase adjusted spinning sidebands (PASS); rotational-echo double-resonance (REDOR); rotor-encoded REDOR (REREDOR); cross-polarization magic-angle spinning (CPMAS); exchange induced sidebands (EIS); one-dimensional exchange spectroscopy by sideband alternation (ODESSA); time-reverse ODESSA (trODESSA); centerband-only detection of exchange (CODEX). In order to test the validity of the AW approach, the Gaussian powder approximation is compared with exact powder calculations. A quantitative study of the effect of molecular dynamics on the efficiency of the TOSS and REDOR pulse sequences is then presented.  相似文献   

19.
New NMR broadband inversion pulses that compensate both for resonance offset and radiofrequency (RF) inhomogeneity are described. The approach described is a straightforward computer optimization of an initial digitized waveform generated from either a constant-amplitude frequency sweep or from an existing composite inversion pulse. Problems with convergence to local minima are alleviated by the way the optimization is carried out. For a given duration and maximum allowable RF field strength B1 (but not necessarily given RMS power deposition), the resultant broadband inversion pulse (BIP) shows superior inversion compared to inversion pulses obtained from previous methods, including adiabatic inversion pulses. Any existing BIP can be systematically elaborated to build up longer inversion pulses that perform over larger and larger bandwidths. The resulting pulse need not be adiabatic throughout its duration or across the entire operational bandwidth.  相似文献   

20.
Experiments which require mixing among spins with large frequency differences are generally performed with sequences based on composite pulses or computer-optimized cycles. Adiabatic pulses generally offer several advantages over other approaches, including greater single spin inversion bandwidths and tolerance to RF inhomogeneity. Here, a novel theoretical framework is presented in order to understand how spin-spin interactions are influenced by adiabatic inversion pulses, and insights from this approach are used to design more efficient adiabatic coherence exchange experiments. For very large frequency differences, this new approach generally offers improved results over previously applied mixing sequences, as applied to 13C-13C experiments which are the basis of modern sidechain assignment techniques in proteins. It is also anticipated that the approach presented here will be applicable to the analysis of various alternative approaches to adiabatic mixing.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号