首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
Single-quantum proton spin coherences produced by a single radio-frequency pulse and evolving in a spatially modulated, external magnetic field were examined theoretically and experimentally in water. It is shown that the coherences are multiply refocused in the form of “grating echoes”. The theoretical treatment describes and explains the phenomena in detail. The fact that this sort of new and unconventional spin echoes can be observed sheds new light on our understanding of other spin coherence phenomena such as the so-called “multiple echoes” first described by G. Deville, M. Bernier, J. M. Delrieux (Phys. Rev. B 19, 5666, 1979).  相似文献   

2.
A. P. Saiko  R. Fedaruk 《JETP Letters》2010,91(12):681-685
Multiplication of spin qubits arises at double resonance in a bichromatic field when the frequency of the radio-frequency (rf) field is close to that of the Rabi oscillation in the microwave field, provided its frequency equals the Larmor frequency of the initial qubit. We show that the operational multiphoton transitions of dressed qubits can be selected by the choice of both the rotating frame and the rf phase. In order to enhance the precision of dressed qubit operations in the strong-field regime, the counter-rotating component of the rf field is taken into account.  相似文献   

3.
It is shown that the number of branches in the energy spectrum of a multiphoton field in a dispersive medium increases together with the number of photons. The kinetics of an individual quantum cannot be considered independently of the evolution of the field as a whole, even if the interaction between the field and each molecule of the medium is linear. The probabilities of the processes which accompany the transition of a quantum from one branch of the spectrum to another are calculated.  相似文献   

4.
In the general relativistic case, the nonresonance photoproduction of electron-positron pairs on a nucleus in the field of two circularly polarized light waves propagating in one direction is theoretically investigated. It is shown that there are two essentially different kinematical regions: the noninterference region, where the Bunkin-Fedorov quantum parameters play the role of multiphoton parameters, and the interference region, where interference effects are important and where quantum interference parameters are treated as multiphoton parameters. The interference effect is found in the photoproduction of an electron-positron pair on a nucleus in the field of two light waves. This effect occurs in the interference region and is due to the production of an electron-positron pair in the plane spanned by the light wave vector and the incident-photon momentum and to stimulated correlated emission and absorption of photons of the two waves. The cross sections for pair photoproduction on a nucleus in the above kinematical regions are determined for moderately strong fields. It is shown that, in the interference region, the partial cross sections for the case where there is a correlated emission (absorption) of the same number of photons of the two waves can significantly exceed the corresponding cross sections in any other geometry.  相似文献   

5.
EPR transient nutation spectroscopy is used to measure the effective field (Rabi frequency) for multiphoton transitions in a two-level spin system bichromatically driven by a transverse microwave (MW) field and a longitudinal radio-frequency (RF) field. The behavior of the effective field amplitude is examined in the case of a relatively strong MW field, when the derivation of the effective Hamiltonian cannot be reduced to first-order perturbation theory in ω1rf1 is the microwave Rabi frequency, ωrf is the RF frequency). Experimental results are consistently interpreted by taking into account the contributions of second and third order in ω1rf evaluated by Krylov-Bogolyubov-Mitropolsky averaging. In the case of inhomogeneously broadened EPR line, the third-order correction modifies the nutation frequency, while the second-order correction gives rise to a change in the nutation amplitude due to a Bloch-Siegert shift.  相似文献   

6.
Two-photon transient nutation is observed in a two-level spin system (E1 centers in crystalline quartz) using a transverse microwave field and a linearly polarized rf field oriented along a static magnetic field in the electron paramagnetic resonance. Nutation is excited when the sum of the energies of a microwave photon and a rf photon is equal to the energy difference between two spin states. The two-photon nature of nutation is confirmed by measuring its frequency as a function of the amplitude and frequency of the rf field as well as the amplitude of the microwave field. The amplitude of the effective field of two-photon transitions is measured. It is shown that the decay rate of two-photon nutation is close to the decay rate for one-photon nutation and is determined by the spin-spin interaction between E1 centers.  相似文献   

7.
8.
The dynamics of laser-assisted elastic collisions in helium is studied using the second-order Born approximation. Detailed calculations of the scattering amplitudes are performed by using the Sturmian basis expansion. Differential cross sections for elastic scattering with the net absorption/emission of up to two photons are calculated for collision energies of 5 eV, 10 eV, and 20 eV. We discuss the influence of the low-energy electrons on the differential cross section (DCS) as a function of the scattering angle for selected choices of the laser frequency and the number of photons exchanged between the external field and electron-helium system.  相似文献   

9.
The dynamics of multiphoton transitions in a two-level spin system excited by transverse microwave and longitudinal RF fields with the frequencies ωmw and ωrf, respectively, is analyzed. The effective time-independent Hamiltonian describing the “dressed” spin states of the “spin + bichromatic field” system is obtained by using the Krylov-Bogoliubov-Mitropolsky averaging method. The direct detection of the time behavior of the spin system by the method of nonstationary nutations makes it possible to identify the multiphoton transitions for resonances ω0 = ωmw + rωrf0 is the central frequency of the EPR line, r = 1, 2), to measure the amplitudes of the effective fields of these transitions, and to determine the features generated by the inhomogeneous broadening of the EPR line. It is shown that the Bloch-Siegert shifts for multiphoton resonances at the inhomogeneous broadening of spectral lines reduce only the nutation amplitude but do not change their frequencies.  相似文献   

10.
An exact theory based on density matrix calculations is provided for assessing the nuclear quadrupole resonance (NQR) behaviour of a spin 1 (14N) subjected to a single radio-frequency pulse. It concerns a powder sample in zero magnetic field with the assumption of an axially symmetric electric field gradient tensor. Theoretical results, in terms of signal evolution as a function of the pulse length (nutation experiments), are checked against values of the radio-frequency field amplitude provided by NMR measurements performed with the same equipment. Good agreement between theory and experiment is obtained.  相似文献   

11.
利用全量子理论的方法,研究了存在相位退相干时多光子T-C模型中两个二能级原子与二项式光场相互作用系统中两原子的布居数反转。讨论了相位退相干系数、二项式光场系数、最大光子数、跃迁光子数对原子布居数反转的影响。结果表明:相位退相干减少了原子布居数反转的振幅、破坏了原子的量子特性。改变跃迁光子数,可以改变原子间布居数反转演化周期及演化强度。当二项式光场的最大光子数增大时,原子布居差的崩塌-回复现象就会逐渐消失。相位退相干因子不变时, 二项式光场从相干态过渡到数态过程中,原子布居的振荡频率由大变小,周期性的崩塌与回复现象逐渐消失。  相似文献   

12.
利用全量子理论的方法,研究了存在相位退相干时多光子T-C模型中两个二能级原子与二项式光场相互作用系统中两原子的布居数反转。讨论了相位退相干系数、二项式光场系数、最大光子数、跃迁光子数对原子布居数反转的影响。结果表明:相位退相干减少了原子布居数反转的振幅、破坏了原子的量子特性。改变跃迁光子数,可以改变原子间布居数反转演化周期及演化强度。当二项式光场的最大光子数增大时,原子布居差的崩塌-回复现象就会逐渐消失。相位退相干因子不变时, 二项式光场从相干态过渡到数态过程中,原子布居的振荡频率由大变小,周期性的崩塌与回复现象逐渐消失。  相似文献   

13.
A novel experimental approach is employed to understand the mechanisms of laser induced damage. Using an OPO (optical parametric oscillator) laser, we have measured the damage thresholds of deuterated potassium dihydrogen phosphate (DKDP) from the near ultraviolet into the visible. Distinct steps, whose width is of the order of k(B)T, are observed in the damage threshold at photon energies associated with the number of photons (3-->2 or 4-->3) needed to promote a ground state electron across the energy gap. The wavelength dependence of the damage threshold suggests that a primary mechanism for damage initiation in DKDP is a multiphoton process in which the order is reduced through excited defect state absorption.  相似文献   

14.
利用全量子理论及部分转置矩阵负本征值的方法,研究了存在相位退相干时多光子T-C模型中两个二能级原子与二项式光场相互作用系统中两原子的纠缠演化特性。讨论了二项式光场的最大光子数M、二项式光场系数η、相位退相干系数γ、跃迁光子数m对原子间纠缠度的影响。结果表明:在γ的作用下,随着M的增加,两原子间纠缠较容易达到稳定的状态,且纠缠度的稳定值变大;选取适当的参量后,随着η的增加,两原子间的纠缠更容易趋于稳定状态,纠缠度稳定值将变小;η越小,纠缠演化的周期越明显。随着γ的增大,纠缠演化不具有周期性易趋于退纠缠。随着m的增大,振荡周期缩短,纠缠强度减弱。  相似文献   

15.
16.
Theoretical study of the interaction of ultrarelativistic hadrons with one another and with nuclei is stimulated by a number of experiments on the scattering of these particles with energies of ten billion electronvolt and more. It is difficult to explain the data obtained in such experiments because of the absence of a consistent relativistic quantum theory of hadrons. However, the existing experiments on the interaction of hadrons with hadrons and nuclei at high and superhigh energies can be well described phenomenologically in the framework of the diffraction approximation [1, 2], which was also used successfully earlier but at much lower, nonrelativistic energies [3, 4]. In the present paper, we derive a general formula for Hyugens's principle for monochromatic vector waves describing particles with spin 1 (for example, deuterons); this is used to obtain formulas for the cross sections of elastic and inelastic (accompanied by the emission of photons without disintegration of the particles) scattering of ultrarelativistic deuterons by nuclei with allowance for the spin and structure of the deuteron and the target nucleus; some special cases are also considered. The internal structure of the colliding nuclei, and also the possibility of excitation and disintegration of the target nuclei are taken into account by means of a generalization of the diffraction method to the case of the collision of any two nuclei, consideration being given to the interaction between each nucleon of the incident nucleus and all the nucleons of the target nucleus. In particular, this generalizes the results of [3–6] (in which diffraction scattering of elementary charged particles with spins 0, 1/2, and 1 with emission of photons was studied) to the case of composite incident particles with spin.Translated from Izvestiya Vysshikh Uchbenykh Zavedenii, Fizika, No. 9, pp. 3–8, September, 1980.  相似文献   

17.
Atoms irradiated with combined femtosecond laser and extreme ultraviolet (XUV) fields ionize through multiphoton processes, even when the energy of the XUV photon is below the ionization potential. However, in the presence of two different XUV photons and an intense laser field, it is possible to induce full electromagnetic transparency. Taking helium as an example, the laser field modifies its electronic structure, while the presence of two different XUV photons and the laser field leads to two distinct ionization pathways that can interfere destructively. This work demonstrates a new approach for coherent control in a regime of highly excited states and strong optical fields.  相似文献   

18.
A strong laser field and the Coulomb field of a nucleus can produce e(+) e(-) pairs. It is shown for the first time that there is a large probability that electrons and positrons created in this process collide after one or several oscillations of the laser field. These collisions can take place at high energy, resulting in several phenomena. The quasielastic collision e(+) e(-) --> e(+) e(-) allows acceleration of leptons in the laser field to higher energies. The inelastic collisions allow production of high-energy photons e(+) e(-) --> 2 gamma and muons e(+) e(-) --> micro(+) micro(-). The yield of high-energy photons and muons produced via this mechanism exceeds exponentially their production through conventional direct creation in laser and Coulomb fields. A relation of the phenomena considered with the antenna mechanism of multiphoton absorption in atoms is discussed.  相似文献   

19.
A suitably matched combination of unidirectional gradient pulses of the radio frequency amplitude B(1) and of the main magnetic field B(0) produces an unconventional type of spin echo, the nutation echo. The echo signal becomes volume selective if the gradients to be matched are inhomogeneously distributed in space. An example is a combination of a constant B(0) gradient and the inhomogeneous B(1) gradient of a surface coil. We suggest a method for localized NMR on this basis. Nutation echoes can also be used to map the spatial distribution of B(1) gradients of an arbitrary radio frequency coil geometry with the aid of a small probe sample. Copyright 2000 Academic Press.  相似文献   

20.
The frequency-comb structure in the extreme ultraviolet(XUV) and vacuum ultraviolet(VUV) regions can be realized by the high-order harmonic generation(HHG) process driven by frequency-comb fields, providing an alternative approach for the measurement of an unknown frequency in XUV or VUV. We consider the case of two driving frequency-comb fields with the same repetition frequency and the carrier frequencies of fundamental-and third-harmonics, respectively.The many-mode Floquet theorem(MMFT) is employed to provide a nonperturbative and exact treatment of the interaction between a quantum system and the frequency-comb laser fields. Multiphoton transition paths involving both fundamentaland third-harmonic photons are opened due to the coupling of the third-harmonic frequency-comb field. The multiphoton transition paths are superpositioned when the carrier-envelope-phase shifts(CEPs) fulfill the matching condition. And the interference of the multiphoton transition paths can be controlled by tuning the relative envelope delay between the fields.We find that the quasienergy structure, as well as the multiphoton resonant high-order harmonic generation(HHG) spectra,driven by the two frequency-comb fields can be coherently controlled via the interference of multiphoton transition paths.It is also found that the spectral intensities of the generated harmonics can be modulated, and the modulation behavior is harmonic-sensitive.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号