首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Kidney stones are crystal aggregates, most commonly containing calcium oxalate monohydrate (COM) crystals as the primary constituent. Notably, in vitro studies have suggested that anionic molecules or macromolecules with substantial anionic functionality (e.g., carboxylate) play an important role in crystal aggregation and crystal attachment to renal epithelial cells. Furthermore, kidney stones contain measurable amounts of carboxylate-rich proteins that may serve as adhesives and promote aggregation of COM crystals. Atomic force microscopy (AFM) measurements of adhesion forces between tip-immobilized molecules and the COM (100) surface in aqueous media, described herein, reveal the effect of functional groups on adhesion and support an important role for the carboxylate group in processes responsible for kidney stone formation, specifically macromolecule-mediated adhesion of COM crystals to cells and crystal aggregation. The presence of poly(aspartic acid) during force measurements results in a reduction in the adhesion force measured for carboxylate-modified tips, consistent with the blocking of binding sites on the COM (100) surface by the carboxylate-rich polymer. This competitive binding behavior mimics the known reduction in attachment of COM crystals to renal epithelial cells in the presence of carboxylate-rich urinary macromolecules. These results suggest a feasible methodology for identifying the most important crystal surface-macromolecule combinations related to stone formation.  相似文献   

2.
研究了非洲绿猴肾上皮细胞(Vero)在损伤前后与一水合草酸钙(COM)和二水合草酸钙(COD)晶体的黏附作用及其引起的细胞反应,探讨了肾结石形成机理.COM和COD晶体与损伤细胞的黏附加重了细胞的过氧化损伤程度,导致损伤细胞的活力进一步降低,乳酸脱氢酶(LDH)释放量和活性氧(ROS)进一步增加,坏死细胞数量进一步增多,细胞体积缩小,并出现凋亡小体.COM晶体对细胞的损伤能力显著大于COD晶体.扫描电子显微镜(SEM)观测结果表明,损伤组Vero与COM微晶的黏附作用显著强于对照组,且能促进COM微晶的聚集.共聚焦显微镜观测结果表明,Vero损伤后,其表面表达的晶体黏附分子透明质酸(HA)显著增加,HA分子是促进微晶黏附的重要原因.细胞表面草酸钙的黏附量和晶体聚集程度与细胞的损伤程度成正相关.本文结果从分子和细胞水平上提示,细胞损伤是导致草酸钙肾结石形成的重要因素.  相似文献   

3.
Exopolymers are thought to influence bacterial adhesion to surfaces, but the time-dependent nature of molecular-scale interactions of biopolymers with a surface are poorly understood. In this study, the adhesion forces between two proteins and a polysaccharide [Bovine serum albumin (BSA), lysozyme, or dextran] and colloids (uncoated or BSA-coated carboxylated latex microspheres) were analyzed using colloid probe atomic force microscopy (AFM). Increasing the residence time of an uncoated or BSA-coated microsphere on a surface consistently increased the adhesion force measured during retraction of the colloid from the surface, demonstrating the important contribution of polymer rearrangement to increased adhesion force. Increasing the force applied on the colloid (loading force) also increased the adhesion force. For example, at a lower loading force of approximately 0.6 nN there was little adhesion (less than -0.47 nN) measured between a microsphere and the BSA surface for an exposure time up to 10 s. Increasing the loading force to 5.4 nN increased the adhesion force to -4.1 nN for an uncoated microsphere to a BSA surface and to as much as -7.5 nN for a BSA-coated microsphere to a BSA-coated glass surface for a residence time of 10 s. Adhesion forces between colloids and biopolymer surfaces decreased inversely with pH over a pH range of 4.5-10.6, suggesting that hydrogen bonding and a reduction of electrostatic repulsion were dominant mechanisms of adhesion in lower pH solutions. Larger adhesion forces were observed at low (1 mM) versus high ionic strength (100 mM), consistent with previous AFM findings. These results show the importance of polymers for colloid adhesion to surfaces by demonstrating that adhesion forces increase with applied force and detention time, and that changes in the adhesion forces reflect changes in solution chemistry.  相似文献   

4.
Two key steps in kidney stone formation--crystal aggregation and attachment to renal tissues--depend on the surface adhesion properties of the crystalline components. Anhydrous uric acid (UA) is the most common organic crystalline phase found in human kidney stones. Using chemical force microscopy, the adhesion force between various functional groups and the largest (100) surface of UA single crystals was measured in both aqueous solution and model urine. Adhesion trends in the two solutions were identical, but were consistently lower in the latter. Changes in the solution ionic strength and pH were also found to affect the magnitude of the adhesion. UA surfaces showed the strongest adhesion to cationic functionalities, which is consistent with ionization of some surface uric acid molecules to urate. Although hydrogen-bonding and van der Waals interactions are usually considered to be dominant forces in the association between neutral organic compounds, this work demonstrates that electrostatic interactions can be important, particularly when dealing with weak acids under certain solution conditions.  相似文献   

5.
The in vivo formation of calcium oxalate concretions having calcium phosphate nidi is simulated in an in vitro (37 degrees C, pH 6.0) dual constant composition (DCC) system undersaturated (sigma DCPD = -0.330) with respect to brushite (DCPD, CaHPO 4 . 2H 2O) and slightly supersaturated (sigma COM = 0.328) with respect to calcium oxalate monohydrate (COM, CaC2O4 . H2O). The brushite dissolution provides calcium ions that raise the COM supersaturation, which is heterogeneously nucleated either on or near the surface of the dissolving calcium phosphate crystals. The COM crystallites may then aggregate, simulating kidney stone formation. Interestingly, two intermediate phases, anhydrous dicalcium phosphate (monetite, CaHPO4) and calcium oxalate trihydrate (COT), are also detected by X-ray diffraction during this brushite-COM transformation. In support of clinical observations, the results of these studies demonstrate the participation of calcium phosphate phases in COM crystallization providing a possible physical chemical mechanism for kidney stone formation.  相似文献   

6.
It has recently been reported that Teflon and polyethylene (PE) if rubbed by polymethylmethacrylate (PMMA) or Nylon as well as non-rubbed PMMA and Nylon induce "redox" reactions, including those of the reduction of Pd(+2) and Cu(+2) ions. On this basis, it was deduced that these dielectric materials may hold ?10(13)-10(14) of "hidden" electrons cm(-2), a value at least three orders of magnitude higher than the charge that a dielectric surface can accumulate without being discharged in air. The "hidden" electrons were termed "cryptoelectrons". In variance to these reports, we offer here an alternative interpretation. Our model is supported by X-ray photoelectron spectroscopy, contact angle and vibrating electrode (modified Kelvin probe) measurements performed on representative examples. Rubbing of the polymers was found to transfer polymer fragments between the rubbed surfaces altering their physical properties. The transferred polymer fragments promote adsorption of Cu(2+) and Pd(2+) ions. It was found that Teflon and PE rubbed with PMMA and Nylon, and non-rubbed PMMA and non-rubbed Nylon do not induce "redox" reactions of Cu(2+) and Pd(2+) ions but adsorb these ions on their surfaces. Furthermore, the earlier reported reduction of Pd(2+) to Pd(0) by electrons, as detected by catalytic activity of Pd(0) in a Cu-plating bath, can be alternatively explained by reduction of adsorbed Pd(2+) by the reducing agents of the bath itself. Based on these findings, we support the hypothesis that charging of dielectric polymers is due to ions or free radicals rather than electrons and there is no evidence to invoke a hypothesis of "cryptoelectrons".  相似文献   

7.
草酸钙结石的形成与尿液中草酸钙的存在形式密切相关,一水草酸钙(COM)促进尿石症形成,而二水草酸钙(COD)易随尿液排出体外。本文采用体外模拟方法,比较研究了COD晶体在水溶液、正常人尿液和结石患者尿液3个不同体系中的稳定性及海藻龙须菜多糖(SPS)对COD的稳定作用。在水溶液和患者尿液中,不但COD转化率高,而且得到的转化产物COM晶体聚集程度大;而在正常人尿液中,COD转化率低,转化产物聚集程度较小。COD在不同体系中转化的速度依次为:水溶液>患者尿液>正常人尿液。从海藻龙须菜中提取的硫酸多糖可以稳定COD的存在并减小COM的聚集,这有利于阻止草酸钙结石的形成,因此,海藻龙须菜多糖有可能用于防止草酸钙结石形成。  相似文献   

8.
An indole based "ratiometric" and "turn-off" tris(N-methylindolyl)methane based chemosensor depicting a contrasting fluorescent behavior towards Hg(2+) and Cu(2+) ions, exhibited NOR and YES logic functions, and also imaged intracellular Hg(2+) in cervix cancer (HeLa) cells.  相似文献   

9.
The antigen I/II family of surface proteins is expressed by oral streptococci, including Streptococcus mutans, and mediates specific binding to, among others, salivary films. The aim of this study was to investigate the interaction forces between salivary proteins and S. mutans with (LT11) and without (IB03987) antigen I/II through atomic force microscopy (AFM) and to relate these interaction forces with the adhesion of the strains to saliva-coated glass in a parallel plate flow chamber. Upon approach of the bacteria toward a saliva-coated AFM tip, both strains experienced a similar repulsive force that was significantly smaller at pH 6.8 (median 3.0 and 3.1 nN for LT11 and IB03987, respectively) than at pH 5.8 (median 4.6 and 4.7 nN). The decay length of these repulsive forces was between 19 and 37 nm. Upon retraction at pH 6.8, the combined specific and nonspecific adhesion forces were significantly stronger for the parent strain LT11 (median -0.4 nN) than for the mutant strain IB03987 (median 0.0 nN), whereas at pH 5.8 the median of the adhesion forces measured was 0.0 nN for both strains. Moreover, at pH 6.8, the parent strain LT11 adhered in significantly higher numbers (9.6 x 106 cm-2) to a salivary coating than the mutant strain IB03987 (2.5 x 106 cm-2). Similar to the difference in adhesion forces between both strains at pH 5.8, the difference in adhesion between both strains also disappeared at pH 5.8, which suggests the involvement of attractive electrostatic forces in the interaction between antigen I/II and salivary coatings. In summary, this study shows that antigen I/II at the surface of S. mutans LT11 is responsible for its increased adhesion to salivary coatings under flow through an additional attractive electrostatic force.  相似文献   

10.
Understanding bacterial adhesion to surfaces requires knowledge of the forces that govern bacterial-surface interactions. Biofilm formation on stainless steel 316 (SS316) by three bacterial species was investigated by examining surface force interaction between the cells and metal surface using atomic force microscopy (AFM). Bacterial-metal adhesion force was quantified at different surface delay time from 0 to 60s using AFM tip coated with three different bacterial species: Gram-negative Massilia timonae and Pseudomonas aeruginosa, and Gram-positive Bacillus subtilis. The results revealed that bacterial adhesion forces on SS316 surface by Gram-negative bacteria is higher (8.53±1.40 nN and 7.88±0.94 nN) when compared to Gram-positive bacteria (1.44±0.21 nN). Physicochemical analysis on bacterial surface properties also revealed that M. timonae and P. aeruginosa showed higher hydrophobicity and surface charges than B. subtilis along with the capability of producing extracellular polymeric substances (EPS). The higher hydrophobicity, surface charges, and greater propensity to form EPS by M. timonae and P. aeruginosa led to high adhesive force on the metal surface.  相似文献   

11.
Atomic force microscopy (AFM) was used to measure adhesion forces between E. coli bacteria and surfaces consisting of a series of polyamides and polystyrene, materials that are prominent in carpeting, upholstery, and other indoor surfaces. Bioparticle adhesion to such surfaces in air is poorly understood, yet these interactions are thought to play a key role in their accumulation and release as indoor air pollutants. The polymers employed were polyamide 6 (PA6), polyamide 6,6 (PA66), polyamide 12 (PA12) and polystyrene (PS). We report the interaction forces between immobilized E. coli and AFM tips coated with each polymer. The adhesion forces for the tip-bacterial interactions were in the range between 2.9 and 6.7 nN, which is of the same magnitude as the polymer-polymer interactions for the same series of polymers. Polystyrene had stronger adhesion with E. coli than any of the three polyamides, by an average factor of 1.4. The work of adhesion and Hamaker constants of the probe-surface interactions were calculated using a square-pyramid flat-surface model developed previously. A drag-force analysis suggests that model spheres with the same adhesion force as E. coli-poly(amide) (F approximately 4 nN) will remain adherent under normal foot traffic (F approximately 0.2 nN), but will release during vacuum cleaning (F>or=30 nN).  相似文献   

12.
Simulation of calcium oxalate stone in vitro   总被引:3,自引:0,他引:3  
Urolithiasis constitutes a serious health problem that affects a significant section of mankind. Between 3% and 14% of the population, depending on the geographical region, suffer from this illness[1]. For example, the incidence of urolithiasis in Florida in the United States of America was 15.7 in 100000 people and increased to 20.8 in 1996. Urolithiasis remains a major medical prob-lem in China, especially in Guangdong Province. A survey in 1997 in Shenzhen City, the most southern city i…  相似文献   

13.
A study of competitive adsorption of Ca(2+) and Zn(II) ions at the monodispersed SiO(2)/electrolyte solution interface is presented. Influence of ionic strength, pH, and presence of other ions on adsorption of Ca(2+) and Zn(II) in the mentioned system are investigated. zeta potential, surface charge density, adsorption density, pH(50%), and DeltapH(10-90%) parameters for different concentrations of carrying electrolyte and adsorbed ions are also presented. A high concentration of zinc ions shifts the adsorption edge of Ca(2+) ions adsorbed from solutions with a low initial concentration at the SiO(2)/NaClO(4) solution interface to the higher pH values. This effect disappears with a concentration increase of calcium ions. The presence of Ca(2+) ions in the system slightly affects the adsorption of zinc ions on SiO(2), shifting the adsorption edge toward lower pH values and thereby increasing the adsorption slope.  相似文献   

14.
Wang L  Jin Y  Deng J  Chen G 《The Analyst》2011,136(24):5169-5174
In this paper, we have reported a sensitive assay for fluorescence "turn-on" detection of Pb(2+) in aqueous solutions based on FRET between gold nanorods (GNRs) and the FAM-labeled substrate strand of 8-17DNAzyme. The fluorescence of the FAM-labeled substrate strand is quenched when 8-17DNAzyme is adsorbed on GNRs surface through electrostatic interaction. In the presence of lead ions, the fluorescence is restored due to the decrease of FRET efficiency caused by the specific cleavage of the FAM-labeled substrate strand by the enzyme, which weakens the electrostatic interaction between the GNRs and short FAM-labeled DNA fragment. The interference of eleven common metal ions has been tested, indicating that Pb(2+) can be selectively detected. This method exhibits a high sensitivity for Pb(2+) with a detection limit of 61.8 pM and a linear range from 0.1 nM to 100 nM. It is a simple, sensitive, and selective method for Pb(2+) detection. Moreover, this sensing system obtained satisfying results for Pb(2+) detection in tap water samples.  相似文献   

15.
The effect of ions on the structure of liquid water is still not completely understood, despite extensive experimental and theoretical studies. A combined XANES and molecular dynamics investigation on diluted Zn(2+) and Hg(2+) aqueous solutions reveals that the influence of a single ion on the bonding pattern of water molecules is strongly dependent on the nature of the ion. While the structure of water is not altered by the presence of the Zn(2+) ion, the Hg(2+) cation has a strong impact on the hydrogen-bond network of water that extends beyond the first coordination shell.  相似文献   

16.
In this study, we report a histidine-based fluorescence probe for Cu(2+) and Hg(2+), in which the amino group and imino group were modified by two common protective groups, 9-fluorenylmethoxycarbonyl and trityl group, respectively. In a water/methanol mixed solution, the probe displayed a selective fluorescence "turn-off" response to Cu(2+) when the ratio of CH(3)OH/H(2)O was higher than 1:1. Specifically, when the solvent is changed to 1:1 methanol/water, the 304 nm fluorescence peak is enhanced, while the 317 nm peak is weakened, upon addition of either Cu(2+) or Hg(2+) ions. The mechanism for such distinct responses of the probe to Cu(2+) and Hg(2+) was further clarified by using NMR and molecular simulation. The experiment results indicated that the polarity of solvent could influence the coordination mode of 1 with Cu(2+) and Hg(2+), and control the fluorescence response as a "turn-off" or ratiometric probe.  相似文献   

17.
Time-dependent bacterial adhesion forces of four strains of Staphylococcus epidermidis to hydrophobic and hydrophilic surfaces were investigated. Initial adhesion forces differed significantly between the two surfaces and hovered around -0.4 nN. No unambiguous effect of substratum surface hydrophobicity on initial adhesion forces for the four different S. epidermidis strains was observed. Over time, strengthening of the adhesion forces was virtually absent on hydrophobic dimethyldichlorosilane (DDS)-coated glass, although in a few cases multiple adhesion peaks developed in the retract curves. Bond-strengthening on hydrophilic glass occurred within 5-35 s to maximum adhesion forces of -1.9 +/- 0.7 nN and was concurrent with the development of multiple adhesion peaks upon retract. Poisson analysis of the multiple adhesion peaks allowed separation of contributions of hydrogen bonding from other nonspecific interaction forces and revealed a force contribution of -0.8 nN for hydrogen bonding and +0.3 nN for other nonspecific interaction forces. Time-dependent bacterial adhesion forces were comparable for all four staphylococcal strains. It is concluded that, on DDS-coated glass, the hydrophobic effect causes instantaneous adhesion, while strengthening of the bonds on hydrophilic glass is dominated by noninstantaneous hydrogen bond formation.  相似文献   

18.
Dansyl-labeled methionine is synthesized by solid-phase synthesis, and found to be a highly sensitive and selective sensor for Hg(2+). The sensor sensitively detects Hg(2+) ions in aqueous solution by a turn-on response; however, the sensor detects Hg(2+) ions by a turn-off response in organic and mixed aqueous-organic solutions. We investigated the binding stoichiometry, binding constant, and binding mode of the sensor under various solvent conditions. In 100% aqueous solution, 2 : 1 complexation of the sensor with Hg(2+) ions is more favorable than 1 : 1 complexation, whereas the sensor preferentially forms a 1 : 1 complex in 100% CH(3)CN or in 50% CH(3)CN-aqueous solutions. Results reveal that the stoichiometry of the sensor-Hg(2+) complex plays an important role in the type of response to Hg(2+) ions, and that 2 : 1 complexation is required for a turn-on response to Hg(2+) ions in aqueous solution.  相似文献   

19.
The nature of the physical interactions between Escherichia coli JM109 and a model surface (silicon nitride) was investigated in water via atomic force microscopy (AFM). AFM force measurements on bacteria can represent the combined effects of van der Waals and electrostatic forces, hydrogen bonding, steric interactions, and perhaps ligand-receptor type bonds. It can be difficult to decouple these forces into their individual components since both specific (chemical or short-range forces such as hydrogen bonding) and nonspecific (long-range colloidal) forces may be present in the overall profiles. An analysis is presented based on the application of Poisson statistics to AFM adhesion data, to decouple the specific and nonspecific interactions. Comparisons with classical DLVO theory and a modified form of a van der Waals expression for rough surfaces were made in order to help explain the nature of the interactions. The only specific forces in the system were due to hydrogen bonding, which from the Poisson analysis were found to be -0.125 nN. The nonspecific forces of 0.155 nN represent an overall repulsive interaction. These nonspecific forces are comparable to the forces calculated from DLVO theory, in which electrostatic-double layer interactions are added to van der Waals attractions calculated at the distance of closest approach, as long as the van der Waals model for "rough" spherical surfaces is used. Calculated electrostatic-double layer and van der Waals interactions summed to 0.116 nN. In contrast, if the classic (i.e., smooth) sphere-sphere model was used to predict the van der Waals forces, the sum of electrostatic and van der Waals forces was -7.11 nN, which appears to be a large overprediction. The Poisson statistical analysis of adhesion forces may be very useful in applications of bacterial adhesion, because it represents an easy way to determine the magnitude of hydrogen bonding in a given system and it allows the fundamental forces to be easily broken into their components.  相似文献   

20.
In this research, screening and central composite experimental designs are used to determine the effect of various factors on the aggregation and dispersion characteristics of previously grown calcium oxalate monohydrate (COM) crystals in artificial urinary environments of controlled variables. The variables examined are pH and calcium, oxalate, pyrophosphate, citrate, and protein concentrations in ultrapure water and artificial urine. Optical density measurements, particle size analysis, optical microscopy, AFM force measurements, and protein adsorption have been used to assess the state of aggregation and dispersion of the COM crystals and to elucidate the mechanisms involved in such a complex system. The data indicate that our model protein, mucin, acts as a dispersant. This is attributed to steric hindrance resulting from the adsorbed mucoprotein. Oxalate, however, promotes aggregation. Interesting interactions between protein and oxalate along with protein and citrate are observed. Such interactions (synergistic or antagonistic) are found to depend on the concentrations of these species. Surface responses for these interactions are presented and discussed in this paper. In summary, solution, surface, and interface chemistries interact in a complex manner in the physiological environment to either inhibit or promote aggregation, and an understanding of such interactions may help determine and control the factors affecting kidney stone formation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号