首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A new macrobicyclic ligand has been prepared, and it is shown to bind Zn(2+) on the inside. The ligand consists of a triamido(amine) motif to coordinate the metal ion and a narrow, hydrophobic channel above the metal binding site.  相似文献   

2.
RNA plays critical roles in numerous biological processes and constitutes valuable therapeutic targets. RNA is significant not only for its roles in transmitting the genetic code but also for its enzymatic functions in ribozymes and in peptide bond formation in ribosomes. Recent studies have shown that RNAs containing as few as 22 nucleotides can be key elements in cellular functions. This suggests the possibility of using short RNAs as regulatory elements. Here, we show that ligand recognition and selectivity by RNA molecules can occur with only the presence of a binding pocket and as few as six additional scaffolding nucleotides holding the binding pocket in place. A 13-mer RNA truncation of a 33-mer aptamer for theophylline preserves the ability to bind to theophylline and to discriminate against the structurally similar compound caffeine. The truncated aptamer retains nearly all of the same structural elements in its binding site as those present in the original aptamer. This is the first demonstration of selective ligand binding by a 13-mer RNA.  相似文献   

3.
Molecular dynamics simulations have been used to study the differences between two DNA and RNA 14-mer quadruplexes of analogous sequences. Their structures present a completely different fold: DNA forms a bimolecular quadruplex containing antiparallel strands and diagonal loops; RNA forms an intrastrand parallel quadruplex containing a G-tetrad and an hexad, which dimerizes by hexad stacking. We used a multiscale computational approach combining classical Molecular dynamics simulations and density functional theory calculations to elucidate the difference in stability of the 2-folds and their ability in coordinating cations. The presence of 2'-OH groups in the RNA promotes the formation of a large number of intramolecular hydrogen bonds that account for the difference in fold and stability of the two 14-mers. We observe that the adenines in the RNA quadruplex play a key role in conserving the geometry of the hexad. We predict the cation coordination mode of the two quadruplexes, not yet observed experimentally, and we offer a rationale for the corresponding binding energies involved.  相似文献   

4.
Encapsulating a single G-quadruplex aptamer in a protein nanocavity   总被引:1,自引:0,他引:1  
The alpha-hemolysin (alphaHL) protein pore has many applications in biotechnology. This article describes a single-molecule manipulation system that utilizes the nanocavity enclosed by this pore to noncovalently encapsulate a guest molecule. The guest is the thrombin-binding aptamer (TBA) that folds into the G-quadruplex in the presence of cations. Trapping the G-quadruplex in the nanocavity resulted in characteristic changes to the pore conductance that revealed important molecular processes, including spontaneous unfolding of the quartet structure and translocation of unfolded DNA in the pore. Through detection with Tag-TBA, we localized the G-quadruplex near the entry of the beta-barrel inside the nanocavity, where the molecule vibrates and rotates to different orientations. This guest-nanocavity supramolecular system has potential for helping to understand single-molecule folding and unfolding kinetics.  相似文献   

5.
The energy landscape of a small RNA tetraloop hairpin is explored by temperature jump kinetics and base-substitution. The folding kinetics are single-exponential near the folding transition midpoint T(m). An additional fast phase appears below the midpoint, and an additional slow phase appears above the midpoint. Stem mutation affects the high-temperature phase, while loop mutation affects the low-temperature phase. An adjusted 2-D lattice model reproduces the temperature-dependent phases, although it oversimplifies the structural interpretation. A four-state free energy landscape model is generated based on the lattice model. This model explains the thermodynamics and multiphase kinetics over the full temperature range of the experiments. An analysis of three variants shows that one of the intermediate RNA structures is a stacking-related trap affected by stem but not loop modification, while the other is an early intermediate that forms some stem and loop structure. Even a very fast-folding 8-mer RNA with an ideal tetraloop sequence has a rugged energy landscape, ideal for testing analytical and computational models.  相似文献   

6.
In an effort to design efficient platform for siRNA delivery, we combine all atom classical and quantum simulations to study the binding of small interfering RNA (siRNA) by pristine single wall carbon nanotube (SWCNT). Our results show that siRNA strongly binds to SWCNT surface via unzipping its base-pairs and the propensity of unzipping increases with the increase in the diameter of the SWCNTs. The unzipping and subsequent wrapping events are initiated and driven by van der Waals interactions between the aromatic rings of siRNA nucleobases and the SWCNT surface. However, molecular dynamics (MD) simulations of double strand DNA (dsDNA) of the same sequence show that the dsDNA undergoes much less unzipping and wrapping on the SWCNT in the simulation time scale of 70 ns. This interesting difference is due to smaller interaction energy of thymidine of dsDNA with the SWCNT compared to that of uridine of siRNA, as calculated by dispersion corrected density functional theory (DFT) methods. After the optimal binding of siRNA to SWCNT, the complex is very stable which serves as one of the major mechanisms of siRNA delivery for biomedical applications. Since siRNA has to undergo unwinding process with the effect of RNA-induced silencing complex, our proposed delivery mechanism by SWCNT possesses potential advantages in achieving RNA interference.  相似文献   

7.
8.
The interaction between ant (antirepressor) mRNA and its antisense RNA, sar (small antisense RNA), is important in regulation of the development of bacteriophage P22. Sar is 68-69 nucleotides in length and is believed to consist of two hairpin structures separated by a small inter-hairpin region, followed by a short 3' tail [Schaefer and McClure RNA 1997, 3, 141-156]. A novel feature of the proposed secondary structure of the first hairpin is a extremely rare triple U:U base stack. Heteronuclear NMR studies presented here show that the first hairpin does not possess a unique structure in the absence of the second hairpin. However, it acquires a well-defined structure within full length sar. Remarkably, the triple U:U stack appears to be a stable feature of the first hairpin, regardless of the presence or absence of the second hairpin.  相似文献   

9.
Remarkably, uniform virus-like particles self-assemble in a process that appears to follow a rapid kinetic mechanism. The mechanisms by which spherical viruses assemble from hundreds of capsid proteins around nucleic acid, however, are yet unresolved. Using time-resolved small-angle X-ray scattering (TR-SAXS), we have been able to directly visualize SV40 VP1 pentamers encapsidating short RNA molecules (500mers). This assembly process yields T = 1 icosahedral particles comprised of 12 pentamers and one RNA molecule. The reaction is nearly one-third complete within 35 ms, following a two-state kinetic process with no detectable intermediates. Theoretical analysis of kinetics, using a master equation, shows that the assembly process nucleates at the RNA and continues by a cascade of elongation reactions in which one VP1 pentamer is added at a time, with a rate of approximately 10(9) M(-1) s(-1). The reaction is highly robust and faster than the predicted diffusion limit. The emerging molecular mechanism, which appears to be general to viruses that assemble around nucleic acids, implicates long-ranged electrostatic interactions. The model proposes that the growing nucleo-protein complex acts as an electrostatic antenna that attracts other capsid subunits for the encapsidation process.  相似文献   

10.
The purpose of the present study is to provide a tool for an efficient design and synthesis of non-viral vectors for small RNA delivery. The effects of properties of the polycation, such as molecular weight, charge density and backbone structure, to polyplex structure and physicochemical behavior were systematically evaluated. The condensing agents, polyethylenimine (PEI), chitosan (CS) and poly(allylamine) (PAA) were added to sRNA molecules at different N/P ratio. The efficiency of encapsulation and protection of sRNA, as well as polyplex size, zeta potential and morphology were followed and compared. The results show that PEI/sRNA polyplexes display a small size and positive zeta potential. However, for low molecular weights, this polycation is unable to protect sRNA in the presence of a decompacting agent. With chitosan, sRNA is efficiently compacted at high N/P ratios. The CS/sRNA complexes display small sizes, ca. 200 nm, positive surface charge and also good stability. Finally, the PAA/sRNA polyplexes were found to be the smallest at low N/P ratios, displaying a good encapsulation efficiency and high stability. A rationale for the experimental observations is provided using Monte Carlo simulation for systems with polycations of different length and charge density. The simulations showed that there is an interplay between the size of polycation chains and its charge density that define the degree of condensation for sRNA.  相似文献   

11.
The X-ray crystal structure of a ribosomal L11-rRNA complex with chloroplast-like mutations in both protein and rRNA is presented. The global structure is almost identical to that of the wild-type (bacterial) complex, with only a small movement of the protein alpha helix away from the surface of the RNA required to accommodate the altered protein residue. In contrast, the specific hydrogen bonding pattern of the mutated residues is substantially different, and now includes a direct interaction between the protein side chain and an RNA base edge and a water-mediated contact. Comparison of the two structures allows the observations of sequence variation and relative affinities of wild-type and mutant complexes to be clearly rationalized, but reinforces the concept that there is no single simple code for protein-RNA recognition.  相似文献   

12.
Guiding bacteria with small molecules and RNA   总被引:6,自引:0,他引:6  
Chemotactic bacteria navigate their chemical environment by coupling sophisticated information processing capabilities to molecular motors that propel the cells forward. The ability to reprogram bacteria to follow entirely new chemical signals would create powerful new opportunities in bioremediation, bionanotechnology, and synthetic biology. However, the complexities of bacterial signaling and limitations of current protein engineering methods combine to make reprogramming bacteria to follow novel molecules a difficult task. Here we show that by using a synthetic riboswitch rather than an engineered protein to recognize a ligand, E. coli can be guided toward and precisely localized to a completely new chemical signal.  相似文献   

13.
14.
RNA molecules participate in many fundamental cellular processes either as a carrier of genetic information or as a catalyst, and hence, RNA has received increasing interest both as a chemotherapeutic agent and as a target of chemotherapy. In addition the dual nature of RNA has led to the RNA-world concept, i.e. an assumption that the evolution at an early stage of life was based on RNA-like oligomers that were responsible for the storage and transfer of information and as catalysts maintained primitive metabolism. Accordingly, the kinetics and mechanisms of the cleavage of RNA phosphodiester bonds have received interest and it is hoped they will shed light on the mechanisms of enzyme action and on the development of artificial enzymes. The major mechanistic findings concerning the cleavage by small molecules and ions and their significance for the development of efficient and biologically applicable artificial catalysts for RNA hydrolysis are surveyed in the present perspective.  相似文献   

15.
BACKGROUND: The 'RNA world' hypothesis requires that RNA be able to catalyze a wide variety of chemical reactions. In vitro selection from combinatorial RNA libraries has been used to identify several catalytic activities, most of which have resulted in a self-modification of RNA at one of its constituents. The formation of carbon-carbon bonds is considered an essential prerequisite for a complex metabolism based on RNA. RESULTS: We describe the selection and characterization of new ribozymes that catalyze carbon-carbon bond formation by Diels-Alder reaction of a biotinylated maleimide with an RNA-tethered anthracene. Secondary structure analysis identified a 49-nucleotide RNA motif that accelerates the reaction about 20,000-fold. The motif has only 11 conserved nucleotides that are present in most of the selected sequences. The ribozyme motif is remarkably adaptable with respect to cofactor and metal-ion requirements. The motif was also re-engineered to give a 38-mer RNA that can act as a 'true' catalyst on short external substrate oligonucleotide-anthracene conjugates. CONCLUSIONS: We have identified a small, highly abundant RNA motif that can solve the complex task of forming two carbon-carbon bonds between two reactants in trans, a catalytic capacity useful for creating prebiotically relevant molecules. This is the smallest and fastest RNA catalyst for carbon-carbon bond formation reported to date.  相似文献   

16.
Loosely aggregated conjugated polymer nanoparticles (CPNs) were used as nontoxic and efficient small interfering RNA (siRNA) delivery vehicles with delivery visualization. A significant down regulation (94%) of a target gene was achieved by transfection of HeLa cells with the CPNs/siRNA complexes, supporting CPN as a promising siRNA delivery carrier.  相似文献   

17.
The reaction of phenylacetonitrile in supercritical methanol and ethanol in a system containing a small volume of water was studied. The effects of various operating conditions, such as reaction temperature, reaction time, the mole ratio of phenylacetonitrile/water/methanol or ethanol on the product yield were systematically investigated. The optimal yield of methyl phenylacetate for phenylacetonitrile in supercritical methanol in a system containing a small volume of water was 70 % at 583 K and 2.5 h. The optimal yield of ethyl phenylacetate for phenylacetonitrile in supercritical ethanol with a small volume of water was 80 % at 583 K and 1.0 h. At the same time, a feasible mechanism was proposed for phenylacetonitrile in supercritical methanol and ethanol in a system containing a small volume of water.  相似文献   

18.
Custom built : A promising new approach towards more efficient self‐assembled cage receptors through computer‐aided design is demonstrated. The resulting M4L6 tetrahedral cage, internally functionalized with accurately positioned urea hydrogen‐bonding groups (see structure; yellow: predicted, blue: experimental, space‐filling: SO42?), proved to be a remarkably strong sulfate receptor in water.

  相似文献   


19.
To determine the impact of IL-23 knockdown by RNA interference on the development and severity of ovalbumin (OVA)-induced asthmatic inflammation, and the potential mechanisms in mice, the IL-23-specific RNAi-expressing pSRZsi-IL-23p19 plasmid was constructed and inhaled into OVA-sensitized mice before each challenge, as compared with that of control mice treated with alum or budesonide. Inhalation of the pSRZsi-IL-23p19, significantly reduced the levels of OVA-challenge induced IL-23 in the lung tissues by nearly 75%, determined by RT-PCR. In addition, knockdown of IL-23 expression dramatically reduced the numbers of eosinophils and neutrophils in BALF and mitigated inflammation in the lungs of asthmatic mice. Furthermore, knockdown of IL-23 expression significantly decreased the levels of serum IgE, IL-23, IL-17, and IL-4, but not IFNgamma, and its anti-inflammatory effects were similar to or better than that of treatment with budesonide in asthmatic mice. Our data support the notion that IL-23 and associated Th17 responses contribute to the pathogenic process of bronchial asthma. Knockdown of IL-23 by RNAi effectively inhibits asthmatic inflammation, which is associated with mitigating the production of IL-17 and IL-4 in asthmatic mice.  相似文献   

20.
Cyclodextrins are widely used as carriers of small molecules for drug delivery owing to their remarkable host properties and excellent biocompatibility. However, cyclic oligosaccharides with different sizes and shapes are limited. Cycloglycosylation of ultra-large bifunctional saccharide precursors is challenging due to the constrained conformational spaces. Herein we report a promoter-controlled cycloglycosylation approach for the synthesis of cyclic α-(1→6)-linked mannosides up to a 32-mer. Cycloglycosylation of the bifunctional thioglycosides and (Z)-ynenoates was found to be highly dependent on the promoters. In particular, a sufficient amount of a gold(I) complex played a key role in the proper preorganization of the ultra-large cyclic transition state, providing a cyclic 32-mer polymannoside, which represents the largest synthetic cyclic polysaccharide to date. NMR experiments and a computational study revealed that the cyclic 2-mer, 4-mer, 8-mer, 16-mer, and 32-mer mannosides adopted different conformational states and shapes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号