首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Spectrally resolved infrared stimulated vibrational echo data were obtained for sperm whale carbonmonoxymyoglobin (MbCO) at 300 K. The measured dephasing dynamics of the CO ligand are in agreement with dephasing dynamics calculated with molecular dynamics (MD) simulations for MbCO with the residue histidine-64 (His64) having its imidazole epsilon nitrogen protonated (N(epsilon)-H). The two conformational substate structures B(epsilon) and R(epsilon) observed in the MD simulations are assigned to the spectroscopic A(1) and A(3) conformational substates of MbCO, respectively, based on the agreement between the experimentally measured and calculated dephasing dynamics for these substates. In the A(1) substate, the N(epsilon)-H proton and N(delta) of His64 are approximately equidistant from the CO ligand, while in the A(3) substate, the N(epsilon)-H of His64 is oriented toward the CO, and the N(delta) is on the surface of the protein. The MD simulations show that dynamics of His64 represent the major source of vibrational dephasing of the CO ligand in the A(3) state on both femtosecond and picosecond time scales. Dephasing in the A(1) state is controlled by His64 on femtosecond time scales, and by the rest of the protein and the water solvent on longer time scales.  相似文献   

2.
Unfolded vs native CO-coordinated horse heart cytochrome c (h-cyt c) and a heme axial methionine mutant cyt c552 from Hydrogenobacter thermophilus ( Ht-M61A) are studied by IR absorption spectroscopy and ultrafast 2D-IR vibrational echo spectroscopy of the CO stretching mode. The unfolding is induced by guanidinium hydrochloride (GuHCl). The CO IR absorption spectra for both h-cyt c and Ht-M61A shift to the red as the GuHCl concentration is increased through the concentration region over which unfolding occurs. The spectra for the unfolded state are substantially broader than the spectra for the native proteins. A plot of the CO peak position vs GuHCl concentration produces a sigmoidal curve that overlays the concentration-dependent circular dichroism (CD) data of the CO-coordinated forms of both Ht-M61A and h-cyt c within experimental error. The coincidence of the CO peak shift curve with the CD curves demonstrates that the CO vibrational frequency is sensitive to the structural changes induced by the denaturant. 2D-IR vibrational echo experiments are performed on native Ht-M61A and on the protein in low- and high-concentration GuHCl solutions. The 2D-IR vibrational echo is sensitive to the global protein structural dynamics on time scales from subpicosecond to greater than 100 ps through the change in the shape of the 2D spectrum with time (spectral diffusion). At the high GuHCl concentration (5.1 M), at which Ht-M61A is essentially fully denatured as judged by CD, a very large reduction in dynamics is observed compared to the native protein within the approximately 100 ps time window of the experiment. The results suggest the denatured protein may be in a glassy-like state involving hydrophobic collapse around the heme.  相似文献   

3.
Spectrally resolved infrared stimulated vibrational echo measurements are used to measure the vibrational dephasing of the CO stretching mode of carbonmonoxy-hemoglobin (HbCO), a myoglobin mutant (H64V), and a bacterial cytochrome c(552) mutant (Ht-M61A) in aqueous solution and trehalose glasses. The vibrational dephasing of the heme-bound CO is significantly slower for all three proteins embedded in trehalose glasses compared to that of aqueous protein solutions. All three proteins exhibit persistent but notably slower spectral diffusion when the protein surface is fixed by the glassy solvent. Frequency-frequency correlation functions (FFCFs) of the CO are extracted from the vibrational echo data to reveal that the structural dynamics, as sensed by the CO, of the three proteins in trehalose and aqueous solution are dominated by fast (tens of femtoseconds), motionally narrowed fluctuations. MD simulations of H64V in dynamic and "static" water are presented as models of the aqueous and glassy environments. FFCFs are calculated from the H64V simulations and qualitatively reproduce the important features of the experimentally extracted FFCFs. The suppression of long time scale (picoseconds to tens of picoseconds) frequency fluctuations (spectral diffusion) in the glassy solvent is the result of a damping of atomic displacements throughout the protein structure and is not limited to structural dynamics that occur only at the protein surface. The analysis provides evidence that some dynamics are coupled to the hydration shell of water, supporting the idea that the bioprotection offered by trehalose is due to its ability to immobilize the protein surface through a thin, constrained layer of water.  相似文献   

4.
Ultrafast protein dynamics of the CO adduct of a myoglobin mutant with the polar distal histidine replaced by a nonpolar valine (H64V) have been investigated by spectrally resolved infrared stimulated vibrational echo experiments and molecular dynamics (MD) simulations. In aqueous solution at room temperature, the vibrational dephasing rate of CO in the mutant is reduced by approximately 50% relative to the native protein. This finding confirms that the dephasing of the CO vibration in the native protein is sensitive to the interaction between the ligand and the distal histidine. The stimulated vibrational echo observable is calculated from MD simulations of H64V within a model in which vibrational dephasing is driven by electrostatic forces. In agreement with experiment, calculated vibrational echoes show slower dephasing for the mutant than for the native protein. However, vibrational echoes calculated for H64V do not show the quantitative agreement with measurements demonstrated previously for the native protein.  相似文献   

5.
Ultrafast spectrally resolved stimulated vibrational echo experiments measure the dephasing of the CO stretching mode of hemoglobin-CO (Hb-CO) inside living human erythrocytes (red blood cells). A method is presented to overcome the adverse impact on the vibrational echo signal from the strong light scattering caused by the cells. The results are compared to experiments on Hb-CO aqueous solutions. It is demonstrated that the dynamics of the protein as sensed by the CO ligand are the same inside the erythrocytes and in aqueous solution, but differences in the absorption spectra show that the cell affects the protein's potential energy surface.  相似文献   

6.
Dynamic and structural properties of carbonmonoxy (CO)-coordinated cytochrome c(552) from Hydrogenobacter thermophilus (Ht-M61A) at different temperatures under thermal equilibrium conditions were studied with infrared absorption spectroscopy and ultrafast two-dimensional infrared (2D IR) vibrational echo experiments using the heme-bound CO as the vibrational probe. Depending on the temperature, the stretching mode of CO shows two distinct bands corresponding to the native and unfolded proteins. As the temperature is increased from low temperature, a new absorption band for the unfolded protein grows in and the native band decreases in amplitude. Both the temperature-dependent circular dichroism and the IR absorption area ratio R(A)(T), defined as the ratio of the area under the unfolded band to the sum of the areas of the native and unfolded bands, suggest a two-state transition from the native to the unfolded protein. However, it is found that the absorption spectrum of the unfolded protein increases its inhomogeneous line width and the center frequency shifts as the temperature is increased. The changes in line width and center frequency demonstrate that the unfolding does not follow simple two-state behavior. The temperature-dependent 2D IR vibrational echo experiments show that the fast dynamics of the native protein are virtually temperature independent. In contrast, the fast dynamics of the unfolded protein are slower than those of the native protein, and the unfolded protein fast dynamics and at least a portion of the slower dynamics of the unfolded protein change significantly, becoming faster as the temperature is raised. The temperature dependence of the absorption spectrum and the changes in dynamics measured with the 2D IR experiments confirm that the unfolded ensemble of conformers continuously changes its nature as unfolding proceeds, in contrast to the native state, which displays a temperature-independent distribution of structures.  相似文献   

7.
Ultrafast spectrally resolved stimulated vibrational echo experiments are used to measure the vibrational dephasing of the CO stretching mode of hemoglobin-CO (HbCO) inside living human erythrocytes (red blood cells), in liquid solutions, and in a glassy matrix. A method is presented to overcome the adverse impact on the vibrational echo signal from the strong light scattering caused by the cells. The results from the cytoplasmic HbCO are compared to experiments on aqueous HbCO samples prepared in different buffers, solutions containing low and high concentrations of glycerol, and in a solid trehalose matrix. Measurements are also presented that provide an accurate determination of the viscosity at the very high Hb concentration that is found inside the cells. It is demonstrated that the dynamics of the protein, as sensed by the CO ligand, are the same inside the erythrocytes and in aqueous solution and are independent of the viscosity. In solutions that are predominantly glycerol, the dynamics are modified somewhat but are still independent of viscosity. The experiments in trehalose give the dynamics at infinite viscosity and are used to separate the viscosity-dependent dynamics from the viscosity-independent dynamics. Although the HbCO dynamics are the same in the red blood cell and in the equivalent aqueous solutions, differences in the absorption spectra show that the distribution of a protein's equilibrium substates is sensitive to small pH differences.  相似文献   

8.
Spectrally resolved infrared stimulated vibrational echo spectroscopy is used to measure the fast dynamics of heme-bound CO in carbonmonoxy-myoglobin (MbCO) and -hemoglobin (HbCO) embedded in silica sol-gel glasses. On the time scale of approximately 100 fs to several picoseconds, the vibrational dephasing of the heme-bound CO is measurably slower for both MbCO and HbCO relative to that of aqueous protein solutions. The fast structural dynamics of MbCO, as sensed by the heme-bound CO, are influenced more by the sol-gel environment than those of HbCO. Longer time scale structural dynamics (tens of picoseconds), as measured by the extent of spectral diffusion, are the same for both proteins encapsulated in sol-gel glasses compared to that in aqueous solutions. A comparison of the sol-gel experimental results to viscosity-dependent vibrational echo data taken on various mixtures of water and fructose shows that the sol-gel-encapsulated MbCO exhibits dynamics that are the equivalent of the protein in a solution that is nearly 20 times more viscous than bulk water. In contrast, the HbCO dephasing in the sol-gel reflects only a 2-fold increase in viscosity. Attempts to alter the encapsulating pore size by varying the molar ratio of silane precursor to water (R value) used to prepare the sol-gel glasses were found to have no effect on the fast or steady-state spectroscopic results. The vibrational echo data are discussed in the context of solvent confinement and protein-pore wall interactions to provide insights into the influence of a confined environment on the fast structural dynamics experienced by a biomolecule.  相似文献   

9.
10.
Ye T  Kaur R  Wen X  Bren KL  Elliott SJ 《Inorganic chemistry》2005,44(24):8999-9006
We have used protein film voltammetry (PFV) to determine the midpoint potentials of the Pseudomonas aeruginosa, Hydrogenobacter thermophilus, and Nitrosomonas europaea wild-type monoheme cytochromes c (cyts c; PA, HT, and NE, respectively), as well as PA N64Q, HT Q64N, and NE V65delta mutants, as a function of pH, and buffer conditions. Recent studies have suggested that the identity of the 64 position of the heme-binding loop (either Asn or Gln) strongly influences the conformation of the Met ligand that binds the heme iron. The PFV studies reveal that HT and NE possess significantly lower potentials (wild-type cyts c having E(m) values of +227 and +250 mV vs SHE) than PA (+290 mV) in 50 mM phosphate buffer, pH 7 at 3 degrees C. The HT Q64N mutant rises in potential compared to wild-type, and the PA N64Q mutant has a lower potential, indicating relationships between Met ligand fluxion, hydrogen bonding to the Met ligand, and redox chemistry. Surprisingly, NE V65delta, possessing a heme binding loop nearly identical to that of the PA protein, displayed an E(m) of +232 mV, even lower than wild-type NE. These data are discussed in terms of models of Met ligand properties and proton dependence.  相似文献   

11.
Cytochromes of the c type with histidine-methionine (His-Met) heme axial ligation play important roles in electron-transfer reactions and in enzymes. In this work, two series of cytochrome c mutants derived from Pseudomonas aeruginosa (Pa c-551) and from the ammonia-oxidizing bacterium Nitrosomonas europaea (Ne c-552) were engineered and overexpressed. In these proteins, point mutations were induced in a key residue (Asn64) near the Met axial ligand; these mutations have a considerable impact both on heme ligand-field strength and on the Met orientation and dynamics (fluxionality), as judged by low-temperature electron paramagnetic resonance (EPR) and nuclear magnetic resonance (NMR) spectra. Ne c-552 has a ferric low-spin (S = 1/2) EPR signal characterized by large g anisotropy with g(max) resonance at 3.34; a similar large g(max) value EPR signal is found in the mitochondrial complex III cytochrome c1. In Ne c-552, deletion of Asn64 (NeN64Delta) changes the heme ligand field from more axial to rhombic (small g anisotropy and g(max) at 3.13) and furthermore hinders the Met fluxionality present in the wild-type protein. In Pa c-551 (g(max) at 3.20), replacement of Asn64 with valine (PaN64V) induces a decrease in the axial strain (g(max) at 3.05) and changes the Met configuration. Another set of mutants prepared by insertion (ins) and/or deletion (Delta) of a valine residue adjacent to Asn64, resulting in modifications in the length of the axial Met-donating loop (NeV65Delta, NeG50N/V65Delta, PaN50G/V65ins), did not result in appreciable alterations of the originally weak (Ne c-552) or very weak (Pa c-551) axial field but had an impact on Met orientation, fluxionality, and relaxation dynamics. Comparison of the electronic fingerprints in the overexpressed proteins and their mutants reveals a linear relationship between axial strain and average paramagnetic heme methyl shifts, irrespective of Met orientation or dynamics. Thus, for these His-Met axially coordinated Fe(III), the large g(max) value EPR signal does not represent a special case as is observed for bis-His axially coordinated Fe(III) with the two His planes perpendicular to each other.  相似文献   

12.
Based on a quantum Langevin equation and its corresponding Hamiltonian within a c-number formalism we calculate the vibrational dephasing rate of a cubic oscillator. It is shown that leading order quantum correction due to anharmonicity of the potential makes a significant contribution to the rate and the frequency shift. We compare our theoretical estimates with those obtained from experiments for small diatomics N(2), O(2), and CO.  相似文献   

13.
14.
We present a set of experiments that provide a complete mapping of coherent and incoherent vibrational relaxation times for a molecule on a metal surface, CO/Ir{111}. Included is the first detection of a midinfrared photon echo from a metallic surface, some 15 years after the analogous measurement on a semiconductor surface, which sets a precedent for the ability to manipulate and rephase polarization on a subpicosecond time scale on surfaces. For the C-O stretch in a strongly dipole-coupled CO layer we obtain a total linewidth of 5.6 cm-1, composed of a homogeneous width of 2.7 cm-1 and an inhomogeneous contribution of 3.0 cm-1. Pure dephasing is negligible at liquid nitrogen temperatures, making CO/Ir{111} an attractive model system for quantum computing.  相似文献   

15.
Two-dimensional infrared (2D IR) spectroscopy of the symmetric and asymmetric C[Triple Bond]O stretching vibrations of Rh(CO)(2)acac in hexane has been used to investigate vibrational coherence transfer, dephasing, and population relaxation in a multilevel vibrational system. The transfer of coherence between close-lying vibrational frequencies results in extra relaxation-induced peaks in the 2D IR spectrum, whose amplitude depends on the coherence transfer rate. Coherence transfer arises from the mutual interaction of the bright CO stretches with dark states, which in this case reflects the mutual d-pi(*) back bonding of the Rh center to both the terminal carbonyls and the acetylacenonate ligand. For 2D IR relaxation experiments with variable waiting times, coherent dynamics lead to the modulation of peak amplitudes, while incoherent population relaxation and exchange results in the growth of the relaxation-induced peaks. We have modeled the data by propagating the density matrix with the Redfield equation, incorporating all vibrational relaxation processes during all three experimental time periods and including excitation reorientation effects arising from relaxation. Coherence and population transfer time scales from the symmetric to the asymmetric stretch were found to be 350 fs and 3 ps, respectively. We also discuss a diagrammatic approach to incorporating all vibrational relaxation processes into the nonlinear response function, and show how coherence transfer influences the analysis of structural variables from 2D IR spectroscopy.  相似文献   

16.
We present molecular dynamics simulations of the photodissociated state of MbNO performed at 300 K using a fluctuating charge model for the nitric oxide (NO) ligand. After dissociation, NO is observed to remain mainly in the centre of the distal haem pocket, although some movement towards the primary docking site and the xenon-4 pocket can be seen. We calculate the NO infrared spectrum for the photodissociated ligand within the haem pocket and find a narrow peak in the range 1915-1922 cm(-1). The resulting blue shift of 1 to 8 cm(-1) compared to gas-phase NO is much smaller than the red shifts calculated and observed for carbon monoxide (CO) in Mb. A small splitting, due to NO in the xenon-4 pocket, is also observed. At lower temperatures, the spectra and conformational space explored by the ligand remain largely unchanged, but the electrostatic interactions with residue His64 become increasingly significant in determining the details of the ligand orientation within the distal haem pocket. The investigation of the effect of the L29F mutation reveals significant differences between the behaviour of NO and that of CO, and suggests a coupling between the ligand and the protein dynamics due to the different ligand dipole moments.  相似文献   

17.
Wen X  Bren KL 《Inorganic chemistry》2005,44(23):8587-8593
Heme axial methionine ligands in ferricytochromes c552 from Hydrogenobacter thermophilus (HT) and Nitrosomonas europaea, both members of the cyt c8 family, display fluxional behavior. The ligand motion, proposed to be inversion at sulfur, results in an unusually small range of hyperfine shifts for heme substituents in these proteins. Herein, heme axial Met fluxion is induced in a structurally homologous cytochrome c551 from Pseudomonas aeruginosa (PA) by substituting heme pocket residue Asn64 with Gln. The mutant, PA-N64Q, displays a highly compressed range of heme substituent hyperfine shifts, temperature-dependent heme methyl resonance line broadening, low rhombic magnetic anisotropy, and a magnetic axes orientation consistent with Met orientational averaging. Analysis of NMR properties of PA-N64Q demonstrates that the heme pocket of the mutant resembles that of HT. This result confirms the importance of peripheral interactions and, in particular, residue 64 in determining axial Met orientation and heme electronic structure in proteins in the cyt c8 family.  相似文献   

18.
采用CSU软件 (Contactsofstructuralunits) ,对 61种球状蛋白质分子中氨基酸紧密接触对 (Residue residuecontact)进行了研究 .重点研究了不同氨基酸在形成远程紧密接触对 (Long rangecontact)和近程紧密接触对 (Short rangecontact)时的不同能力 .发现氨基酸Leu,Val,Ile,Met,Phe,Tyr,Cys,Trp(疏性氨基酸 ,H)比较容易形成远程紧密接触对 ,氨基酸Glu,Gln ,Asp ,Asn,Lys,Ser,Arg,Pro(亲水氨基酸 ,P)比较难形成远程紧密接触对 ,而氨基酸Ala,Gly,Thr,His(中性氨基酸 ,N)在形成远程紧密接触对时能力一般 .它们平均每个氨基酸可形成 6 0 3 ,3 64和 4 43个远程紧密接触对 .同时它们在形成近程紧密接触对时能力非常接近 ,平均每个氨基酸可形成的近程紧密接触对数目在 2 3 4~ 2 85变化 ,差别非常小 .亲水氨基酸 (P) ,中性氨基酸 (N)和疏水性氨基酸 (H)在蛋白质分子结构稳定性上起着不同的作用  相似文献   

19.
The dynamics of water in nanoscopic pools 1.7-4.0 nm in diameter in AOT reverse micelles were studied with ultrafast infrared spectrally resolved stimulated vibrational echo and pump-probe spectroscopies. The experiments were conducted on the OD hydroxyl stretch of low-concentration HOD in the H2O, providing a direct examination of the hydrogen-bond network dynamics. Pump-probe experiments show that the vibrational lifetime of the OD stretch mode increases as the size of the reverse micelle decreases. These experiments are also sensitive to hydrogen-bond dissociation and reformation dynamics, which are observed to change with reverse micelle size. Spectrally resolved vibrational echo data were obtained at several frequencies. The vibrational echo data are compared to data taken on bulk water and on a 6 M NaCl solution, which is used to examine the role of ionic strength on the water dynamics in reverse micelles. Two types of vibrational echo measurements are presented: the vibrational echo decays and the vibrational echo peak shifts. As the water nanopool size decreases, the vibrational echo decays become slower. Even the largest nanopool (4 nm, approximately 1000 water molecules) has dynamics that are substantially slower than bulk water. It is demonstrated that the slow dynamics in the reverse micelle water nanopools are a result of confinement rather than ionic strength. The data are fit using time-dependent diagrammatic perturbation theory to obtain the frequency-frequency correlation function (FFCF) for each reverse micelle. The results are compared to the FFCF of water and show that the largest differences are in the slowest time scale dynamics. In bulk water, the slowest time scale dynamics are caused by hydrogen-bond network equilibration, i.e., the making and breaking of hydrogen bonds. For the smallest nanopools, the longest time scale component of the water dynamics is approximately 10 times longer than the dynamics in bulk water. The vibrational echo data for the smallest reverse micelle displays a dependence on the detection wavelength, which may indicate that multiple ensembles of water molecules are being observed.  相似文献   

20.
Heterodyned two-dimensional infrared (2D IR) spectroscopy has been used to study the amide I vibrational dynamics of a 27-residue peptide in lipid vesicles that encompasses the transmembrane domain of the T-cell receptor CD3zeta. Using 1-(13)C[Double Bond](18)O isotope labeling, the amide I mode of the 49-Leucine residue was spectroscopically isolated and the homogeneous and inhomogeneous linewidths of this mode were measured by fitting the 2D IR spectrum collected with a photon echo pulse sequence. The pure dephasing and inhomogeneous linewidths are 2 and 32 cm(-1), respectively. The population relaxation time of the amide I band was measured with a transient grating, and it contributes 9 cm(-1) to the linewidth. Comparison of the 49-Leucine amide I mode and the amide I band of the entire CD3zeta peptide reveals that the vibrational dynamics are not uniform along the length of the peptide. Possible origins for the large amount of inhomogeneity present at the 49-Leucine site are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号