首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
We have successfully synthesised and characterised a number of eta(1)- and eta(3)-triazacyclononane Rh(I) and Rh(III) derivatives. By using different reaction conditions, we have been able to convert one of the eta(1)-triazacyclononane complexes to an eta(3)-derivative. Also, we have observed a rare example of an addition of an organic fragment to a metal bound ligand to form a quaternary carbon centre.  相似文献   

3.
Several new mono- and dinuclear eta (5)-pentamethylcyclopentadienyl (Cp*) iridium(III) complexes bearing 5-methyltetrazolate (MeCN 4 (-)) have been synthesized and their molecular and crystal structures have been determined. For complexes incorporating 2,2'-bipyridine (bpy) or 1,10-phenanthroline (phen), both mononuclear kappa N (2)-coordinated and dinuclear mu-kappa N (1):kappa N (3)-bridging MeCN 4 complexes were obtained: [Cp*Ir(bpy or phen)(MeCN 4-kappa N (2))]PF 6 ( 1 or 3) and [{Cp*Ir(bpy or phen)} 2(mu-MeCN 4-kappa N (1):kappa N (3))](PF 6) 3 ( 2 or 4), respectively. It was confirmed by X-ray analysis that the dinuclear complex in 2 has a characteristic structure with a pyramidal pocket constructed from a mu-kappa N (1):kappa N (3)-bridging MeCN 4 (-) and two bpy ligands. In the case of analogous complexes with N, N-dimethyldithiocarbamate (Me 2dtc (-)), yellow platelet crystals of mononuclear kappa N (1)-coordinated complex, [Cp*Ir(Me 2dtc)(MeCN 4-kappa N (1))].HN 4CMe ( 5.HN 4CMe), and yellow prismatic crystals of dinuclear mu-kappa N (1):kappa N (4)-bridging one, [{Cp*Ir(Me 2dtc)} 2(mu-MeCN 4-kappa N (1):kappa N (4))]PF 6 ( 6), were deposited. The kappa N (1)- and kappa N (1):kappa N (4)-bonding modes of MeCN 4 (-) in these complexes presumably arise from the compactness of the Me 2dtc (-) coligand. 6 is the first example in which tetrazolates act as a mu-kappa N (1):kappa N (4)-bridging ligand. Furthermore, the molecular and crystal structures of dinuclear complexes having mu-kappa (2) S, N:kappa S-bridging 2-pyridinethiolate (2-Spy (-)) or 8-quinolinethiolate (8-Sqn (-)) ligands have been determined: [(Cp*Ir) 2(mu-2-Spy or 8-Sqn-kappa (2) S, N:kappa S) 2] ( 7 or 8). These thiolato-bridging complexes were stable toward the addition of 5-methyltetrazole (HN 4CMe), owing to the characteristic intramolecular stacking interaction between the pyridine or the quinoline rings. The 2-Spy complex of 7, however, reacted with an excess amount of Na(N 4CMe), resulting in cleavage of the IrN(py) bond and coordination of MeCN 4 (-) in the mu-kappa N (2):kappa N (3)-bridging mode: [(Cp*Ir) 2(mu-2-Spy-kappa S:kappa S) 2(mu-MeCN 4-kappa N (2):kappa N (3))]PF 6 ( 9). This bridging mode of MeCN 4 (-) was also observed in the triply bridging MeCN 4 complex: [(Cp*Ir) 2(mu-MeCN 4-kappa N (2):kappa N (3)) 3]PF 6 ( 10). In these various MeCN 4 complexes, the structural parameters of the MeCN 4 moiety were not perturbed by the difference in the bonding modes.  相似文献   

4.
5.
Me2NNS reacts with [Rh(CO)2Cl]2 to produce the complex cis-Rh(SNNMe2)(CO)2Cl (1). The latter undergoes reversible CO substitution by Me2NNS to give the complex trans-Rh(SNNMe2)2(CO)Cl (2a). Complexes 1 and 2a, in solution lose CO and Me2NSS, respectively, to give the complex trans-(μ-Cl)2[Rh(SNNMe2)(CO)]2 (3). Complex 1 can also be prepared by bubbling CO through a CH2Cl2 solution of Rh(SNNMe2)(diene)Cl (diene = 1,5-cyclooctadiene (4a), norbornadiene (4b)) obtained by a bridge-splitting reaction of Me2NNS with [Rh(diene)Cl]2. 1 and 2a react with EPh3 (E = P, As, Sb) to give the complexes trans-Rh(EPh3)2(CO)Cl. The complexes trans-Rh(E′Ph3)2(CO)X (X = Cl, E′ = As, Sb; X = Br, NCS, E′ = As) undergo reversible E′Ph3 displacement upon treatment with Me2NNS to give the complexes trans-Rh(SNNMe2)2(CO)X (X = Cl (2a), Br (2b), NCS (2c)). Oxidative additions of Br2, I2, or HgCl2 to 2a produce stable adducts, while the reaction of 2a with CH3I gives an inseparable mixture of the adduct Rh(SNNMe2)2(CO)(CH3)ClI and the acetyl derivative Rh(SNNMe2)2(CH3CO)ClI. A mixture of the acetyl derivative (μ-Cl)2[Rh(SNNMe2)(CH3CO)I]2 and the adduct (μ-Cl)2[Rh(SNNMe2)(CO)(CH3)I]2 is obtained by treating 1 with CH3I. The IR spectra of all the compounds are consistent with S-coordination of Me2NNS. Because of the restricted rotation around the NN bond, the 1H NMR spectra of the new compounds exhibit two quadruplets in the range 3.5–4.3δ when 4J(HH) = 0.7–0.5 Hz. When 4J(HH) < 0.5 Hz, the perturbing effect of the quadrupolar relaxation of the 14N nucleus obscures the spin-spin coupling and two broad signals are observed in the range 3.6–4δ.  相似文献   

6.
The synthesis, spectroscopic characterization and crystal structures of the first 1,4-bis(4-nitrosophenyl)piperazine (BNPP) (4) bridged dinuclear complexes of rhodium(III) and iridium(III) are presented. The reaction of the μ(2)-halogenido-bridged dimers [(η(5)-C(5)Me(5))IrX(2)](2) [X = Cl (5a), Br (5b), I (5c)] and [(η(5)- C(5)Me(5))RhCl(2)](2) (6a) with 4 yields the dinuclear complexes [(η(5)-C(5)Me(5))IrX(2)](2)-BNPP (7a-c) and [(η(5)-C(5)Me(5))RhCl(2)](2)-BNPP (8a). All new compounds were characterized by their NMR, IR and mass spectra. The X-ray structure analyses of the obtained half-sandwich complexes revealed a slightly distorted pseudo-octahedral configuration ("three-legged pianostool") for the metal(III) centers. The bridging BNPP ligand is σ-N coordinated by both nitroso groups and shows different conformations of the piperazine ring depending on the solvent used for crystallization. Moreover the crystal structures of 1,4-bis(4-nitrosophenyl)piperazine (4) and its precursor 1,4-diphenylpiperazine (3) are reported.  相似文献   

7.
Treatment of [M(Buppy)2Cl]2 (M=Ir (1), Rh (2); BuppyH=2-(4-tert-butylphenyl)pyridine) with Na(Et2NCS2), K[S2P(OMe)2], and K[N(Ph2PS)2]2 afforded monomeric [Ir(Buppy)2(SS)] (SS=Et2NCS2 (3), S2P(OMe)2 (4), N(PPh2S)2 (5)) and [Rh(Buppy)2(SS)] (SS=Et2NCS2 (6), S2P(OMe)2 (7), N(PPh2S)2 (8)), respectively. Reaction of 1 with Na[N(PPh2Se)2] gave [Ir(Buppy)2{N(PPh2Se)2}] (9). The crystal structures of 3, 4, 7, and 8 have been determined. Treatment of 1 or 2 with AgOTf (OTf=triflate) followed by reaction with KSCN gave dinuclear [{M(Buppy)2}2(μ-SCN)2] (M=Ir (10), Rh (11)), in which the SCN ligands bind to the two metal centers in a μ-S,N fashion. Interaction of 1 and 2 with [Et4N]2[WQ4] gave trinuclear heterometallic complexes [{Ir(Buppy)2}2(μ-WQ4)] (Q=S (12), Se (13)) and [{Rh(Buppy)2}2{(μ-WQ)4}] (Q=S (14), Se (15)), respectively. Hydrolysis of 12 led to formation of [{Ir(Buppy)2}2{W(O)(μ-S)23-S)}] (16) that has been characterized by X-ray diffraction.  相似文献   

8.
Reactions of [Tp*Rh(coe)(MeCN)](1; Tp*= hydrotris(3,5-dimethylpyrazol-1-yl); coe = cyclooctene) with one equiv of diphenyl dichalcogenides PhEEPh (E = Se, Te) afforded the mononuclear Rh(III) complexes [Tp*Rh(EPh)(2)(MeCN)](2b: E = Se; 2c: E = Te), as reported previously for the formation of [Tp*Rh(SPh)(2)(MeCN)](2a) from the reaction of 1 and PhSSPh. Complexes 2a-2c were treated with the Ru(II) complex [(Cp*Ru)(4)(mu(3)-Cl)(4)](Cp*=eta(5)-C(5)Me(5)) in THF at room temperature, yielding the chalcogenolato-bridged dinuclear complexes [Tp*RhCl(mu-EPh)(2)RuCp*(MeCN)](3). Complex 3a (E = S) in solution was converted slowly into a mixture of 3a and the sterically less encumbered dinuclear complex [Tp*RhCl(SPh)(mu-eta(1)-S-eta(6)-Ph)RuCp*](4a) at room temperature. In 4a, one SPh group binds only to the Rh center as a terminal ligand, while the other SPh group bridges the Rh and Ru atoms by coordinating to the former at the S atom and to the latter with the Ph group in a pi fashion. The Se analogue 3b also underwent a similar transformation under more forcing conditions, e.g. in benzene at reflux, whereas formation of the mu-eta(1)-Te-eta(6)-Ph complex was not observed for the Te analogue 3c even under these forcing conditions. When complexes 3 was dissolved in THF exposed to air, the MeCN ligand bound to Ru was substituted by dioxygen to give the peroxo complexes [Tp*RhCl(mu-EPh)(2)RuCp*(eta(2)-O(2))](5a: E = S; 5b: E = Se; 5c: E = Te). X-Ray analyses have been undertaken to determine the detailed structures for 2c, 3a, 3b, 4a, 5a, 5b, and 5c.  相似文献   

9.
Disulfide-bridged dinuclear ruthenium complexes [[Ru(MeCN)(P(OMe)(3))(2)](2)(mu-X)(mu,eta(2)-S(2))][ZnX(3)(MeCN)] (X = Cl (2), Br (4)), [[Ru(MeCN)(P(OMe)(3))(2)](2)(mu-Cl)(2)(mu,eta(1)-S(2))](CF(3)SO(3)) (5), [[Ru(MeCN)(P(OMe)(3))(2)](2)(mu-Cl)(mu,eta(2)-S(2))](BF(4)) (6), and [[Ru(MeCN)(2)(P(OMe)(3))(2)](2)(mu-Cl)(mu,eta(1)-S(2))](CF(3)SO(3))(3) (7) were synthesized, and the crystal structures of 2 and 4 were determined. Crystal data: 2, triclinic, P1, a = 15.921(4) A, b = 17.484(4) A, c = 8.774(2) A, alpha = 103.14(2) degrees, beta = 102.30(2) degrees, gamma = 109.68(2) degrees, V = 2124(1) A(3), Z = 2, R (R(w)) = 0.055 (0.074); 4, triclinic, P1 a = 15.943(4) A, b = 17.703(4) A, c = 8.883(1) A, alpha = 102.96(2) degrees, beta = 102.02(2) degrees, gamma = 109.10(2) degrees, V = 2198.4(9) A(3), Z = 2, R (R(w)) = 0.048 (0.067). Complexes 2 and 4 were obtained by reduction of the disulfide-bridged ruthenium complexes [[RuX(P(OMe)(3))(2)](2)(mu-X)(2)(mu,eta(1)-S(2))] (X = Cl (1), Br (3)) with zinc, respectively. Complex 5 was synthesized by oxidation of 2 with AgCF(3)SO(3). Through these redox steps, the coordination mode of the disulfide ligand was converted from mu,eta(1) in 1 and 3 to mu,eta(2) in 2 and 4 and further reverted to mu,eta(1) in 5. Electrochemical studies of 6 indicated that similar conversion of the coordination mode occurs also in electrochemical redox reactions.  相似文献   

10.
Treatment of anhydrous chromium(III) chloride with 2 or 3 equivalents of 1,3-di-tert-butylacetamidinatolithium or 1,3-diisopropylacetamidinatolithium in tetrahydrofuran at ambient temperature afforded Cr(tBuNC(CH3)NtBu)2(Cl)(THF) and Cr(iPrNC(CH3)NiPr)3 in 78% and 65% yields, respectively. Treatment of Cr(tBuNC(CH3)NtBu)2(Cl)(THF) with the potassium salts derived from pyrazoles and 1,2,4-triazoles afforded Cr(tBuNC(CH3)NtBu)2(X), where X=3,5-disubstituted pyrazolato or 3,5-disubstituted 1,2,4-triazolato ligands, in 65-70% yields. X-Ray crystal structure analyses of Cr(tBuNC(CH3)NtBu)2(Me2pz) (Me2pz=3,5-dimethylpyrazolato) and Cr(tBuNC(CH3)NtBu)2(Me2trz) (Me2trz=3,5-dimethyl-1,2,4-triazolato) revealed eta2-coordination of the Me2pz and Me2trz ligands. Treatment of Cr(tBuNC(CH3)NtBu)2(Cl)(THF) with trifluoromethyltetrazolatosodium (NaCF3tetz) in the presence of 4-tert-butylpyridine afforded Cr(tBuNC(CH3)NtBu)2(CF3tetz)(4-tBupy) in 30% yield. An X-ray crystal structure determination showed eta1-coordination of the tetrazolato ligand through the 2-nitrogen atom. The complexes Cr(iPrNC(CH3)NiPr)3 and Cr(tBuNC(CH3)NtBu)2(X) are volatile and sublime with <1% residue between 120 and 165 degrees C at 0.05 Torr. In addition, these complexes are thermally stable at >300 degrees C under an inert atmosphere such as nitrogen or argon. Due to the good volatility and high thermal stability, these new compounds are promising precursors for the growth of chromium-containing thin films using atomic layer deposition.  相似文献   

11.
12.
Summary Some thiazolidine-2-thione and thiomorpholin-3-one complexes of rhodium(lll), iridium(III), ruthenium(III) and osmium(III) have been prepared and characterized by chemical analysis, conductivity measurements, room temperature magnetic moment studies, electronic, i.r. and far i.r. spectra and n.m.r. measurements. From the magnetic properties it was concluded that the above ligands form low-spin complexes with all the metal ions. The position and multiplicity of the metal-halogen stretching modes in the far-i.r. region have been extensively investigated and discussed; the results are particularly useful in distinguishing between themer- andfac-isomers in the octahedral compounds of the ML3 X3 type. The wavelengths of the principal electronic absorption peaks have been accounted for quantitatively in terms of the crystal field theory and the various parameters have been calculated. On the basis of the electronic spectra a trigonal bipyramidal geometry,D 3h, has been established for the Ru(tm)2Cl3 complex; the Ir(rm)2Cl3 · H2O complex has also been prepared. It is penta-coordinated and a trigonal bipyramidal environment is suggested for the iridium(III) ion.  相似文献   

13.
The feasibility of capillary electrophoresis for distinguishing between the rhodium(III) species occurring in different acidic environments has been demonstrated. The separation was optimum under acidic electrolyte conditions in which the complexed Rh species were at their most stable and the electroosmotic flow approached zero, thereby aiding resolution. Identification of the forms of Rh and estimation of their relative equilibrium content were accomplished by use of a diode-array detector. The distribution of the metal complexes was highly dependent on the nature and concentration of the acid and the age of the rhodium stock solutions. On dilution Rh(III) tends to be readily hydrolyzed, giving rise to a wider variety (and a varied distribution) of complexed forms. In 0.1 mol L(-1) HCl, four differently charged chloro complexes--RhCl4(H2O)2-, RhCl3(OH)(H2O)2-, RhCl3(H2O)3, and RhCl2(H2O)4+--were separated and identified. When a stock solution in 11 mol L(-1) HCl was run, Rh produced a major peak ascribed to RhCl6(3-) and two slowly migrating peaks from ions in which one or two of the chloride ligands were probably replaced by water and hydroxyl ion, as a result of hydrolysis. The aquatic cationic species were found to be predominant in HClO4 and HNO3 solutions, whereas only negatively charged forms of Rh(III) occurred in sulfuric acid. This speciation information opens also new possibilities of assessing the catalytic activity of Rh in kinetic reactions.  相似文献   

14.
The reaction of [(η5-C5Me5)M(μCl)Cl]2 with the ligand (LL) in the presence of sodium methoxide yielded compounds of general formula [(η5-C5Me5)M(LL)Cl] (1–10) (where M = Ir or Rh and LL = NO or OO chelate ligands). Azido complexes of formulation [(η5-C5Me5)M(LL)N3] (11–20) have been prepared by the reaction of [(η5-C5Me5)M(μN3)(X)]2 (X = Cl or N3) with the corresponding ligands or by the direct reaction of [(η5-C5Me5)M(LL)Cl] with NaN3. These azido complexes [(η5-C5Me5)M(LL)N3] undergo 1,3-dipolar cycloaddition reaction with substituted alkynes in CH2Cl2 and for the first time in ethanol at room temperature to yield iridium (III) and rhodium (III) triazoles (21–28). The compounds were characterized on the basis of spectroscopic data, and the molecular structures of 2 and 26 have been established by single crystal X-ray diffraction.  相似文献   

15.
The compound CpRh(C(2)H(3)CO(2)(t)Bu)(2) 1 has been synthesised as a mixture of two pairs of interconverting isomers which differ in the relative orientations of the alkene substituents. The four isomers have been fully characterised by NMR spectroscopy. When complex 1 is photolysed in the presence of a silane, HSiR(2)R'R(2)R'= Et(3), Me(3), HEt(2), (OMe)(3) and Me(2)Cl] the corresponding Si-H oxidative addition products CpRh(SiR(2)R')(H)(C(2)H(3)CO(2)(t)Bu) and CpRh(H)(2)(SiR(2)R')(2) are formed. The Rh(III) complexes CpRh(SiR(2)R')(H)(C(2)H(3)CO(2)(t)Bu) exist in two isomeric forms of comparable energy which interconvert in an intramolecular process that does not involve a reversible [1,3] hydride or [1,3] silyl migration. The hydride (1)H NMR resonances for these species consequently broaden before coalescing into a single peak. For R(2)R'= Et(3), the activation parameters for interchange from the major to minor isomer were Delta H++= 60.2 +/- 2 kJ mol(-1) and Delta S++= 8 +/- 9 J mol(-1) K(-1), while for R(2)R'= Me(3) and Et(2)H, Delta H++= 61.5 +/- 1 kJ mol(-1), Delta S++= 6 +/- 5 J mol(-1) K(-1), and Delta H++= 61.8 +/- 3 kJ mol(-1), Delta S++= 12 +/- 9 J mol(-1) K(-1) respectively for conversion from the major isomer to the minor. For these complexes an eta(2)-Rh-H-Si transition state or intermediate is consistent with the evidence. When R(2)R'=(OMe)(3) and Me(2)Cl the change in appearance of the hydride resonances is more complex, with the activation parameters for interchange from the major to minor isomer for the former species being Delta H++= 78.3 +/- 2 kJ mol(-1) and Delta S++= 30 +/- 7 J mol(-1) K(-1) while for Me(2)Cl the barrier proved too high to measure before decomposition occurred. The complex spectral changes could be simulated when a discrete eta(2)-Rh-H-Si intermediate was involved in the isomer interconversion process and hence silane rotation in all these systems is proposed to involve two isomers of CpRh(eta(2)-HSiR(2)R')(C(2)H(3)CO(2)(t)Bu).  相似文献   

16.
A series of new RhIII complexes with N-substituted salicylaldimines have been prepared of the form [RhSBPy2]PF6 where SB is a tetradentate N,N′-substituted bis(salicylaldimine) or represents two molecules of a corresponding bidentate derivative. Several of these complexes have been reduced with 0.5% sodium amalgam and the products reacted with CH3I to yield the organometallic derivatives CH3RhSBPy.  相似文献   

17.
The measured Raman and IR spectra of solid, polycrystalline bis(pentamethylcyclopentadienyl)dizinc, (eta(5)-C5Me5)2Zn2, 1, and bis(pentamethylcyclopentadienyl)monozinc, (eta(5)-C5Me5)(eta(1)-C5Me5)Zn, 8, are reported in some detail. The IR spectra of the vapors of 1 and 8 each trapped in a solid Ar matrix at 12 K confirm the essentially molecular character of the solids. The experimental results have been interpreted with particular reference (i) to the corresponding spectra of (68)Zn-enriched samples of the compounds, and (ii) to the spectra simulated by density functional theory (DFT) calculations at the B3LYP level. The marked differences of structure of 1 and 8 contrast with the relatively close similarity of their vibrational spectra, disparities being revealed only on detailed scrutiny, including the effects of (68)Zn enrichment, and primarily at wavenumbers below 1000 cm(-1). The Zn-Zn stretching motion of 1 features not as a single, well-defined mode identifiable with intense Raman scattering but in several normal modes which respond in varying degrees to (68)Zn substitution. A stretching force constant of 1.42 mdyne A(-1) has been estimated for the Zn-Zn bond of 1.  相似文献   

18.
19.
20.
Summary The complexes Rh(5-C5Me5)(CNR)Cl2, [Rh(5 - C5Me5)(CNR)2Cl][PF6], (R = Me, Et, i-Pr, t-Bu, C6H11, , p-CIC6H4 and 1-naphthyl), and [Rh(5-C5Me5)(CNR)3][PF6] (R = Et, i-Pr and t-Bu)] have been prepared by treatment of [Rh(5-C5Me5)Cl2]2 with RNC in the presence of [PF6] (as appropriate). These complexes do not react with alcohols or amines to yield carbenes, but withm-MeC6H4SNa and NaS2CNR2, the species Rh(5-C5H5)(CNEt)(SC6M4Me-m)2 and [Rh(5-C5Me5)(CNR)(S2CNR2)][PF6] (R = Me, R1 = Me or Et; R =p-ClC6H4, R1 = Me) are formed. Treatment of [Rh(5-C5H5)(CNR)2Cl][PF6] with NaBH4 gave low yields of compounds tentatively formulated as [Rh(5-C5Me5)(CNR)2(BH4)][PF6] (R = Me or Et).Reprints of this article are not available.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号