首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 531 毫秒
1.
Reactions of the bis(hydrosulfido) complexes [Cp*Rh(SH)(2)(PMe(3))] (1a; Cp* = eta(5)-C(5)Me(5)) with [CpTiCl(3)] (Cp = eta(5)-C(5)H(5)) and [TiCl(4)(thf)(2)] in the presence of triethylamine led to the formation of the sulfido-bridged titanium-rhodium complexes [Cp*Rh(PMe(3))(micro(2)-S)(2)TiClCp] (2a) and [Cp*Rh(PMe(3))(micro2-S)(2)TiCl(2)] (3a), respectively. Complex 3a and its iridium analogue 3b were further converted into the bis(acetylacetonato) complexes [Cp*M(PMe(3))(micro(2)-S)(2)Ti(acac)(2)] (4a, M = Rh; 4b, M = Ir) upon treatment with acetylacetone. The hydrosulfido complexes 1a and [Cp*Ir(SH)(2)(PMe(3))] (1b) also reacted with [VCl(3)(thf)(3)] and [Mo(CO)(4)(nbd)] (nbd = 2,5-norbornadiene) to afford the cationic sulfido-bridged VM2 complexes [(Cp*M(PMe(3))(micro2-S)(2))2V](+) (5a(+), M = Rh; 5b(+), M = Ir) and the hydrosulfido-bridged MoM complexes [Cp*M(PMe(3))(micro2-SH)(2)Mo(CO)(4)] (6a, M = Rh; 6b, M = Ir), respectively.  相似文献   

2.
The 16-electron half-sandwich complex [Cp*Ir[S2C2(B10H10)]] (Cp* = eta5-C5Me5) (1a) reacts with [[Rh(cod)(mu-Cl)]2] (cod = cycloocta-1,5-diene, C8H12) in different molar ratios to give three products, [[Cp*Ir[S2C2(B10H9)]]Rh(cod)] (2), trans-[[Cp*Ir[S2C2(B10H9)]]Rh[[S2C2(B10H10)]IrCp*]] (3), and [Rh2(cod)2[(mu-SH)(mu-SC)(CH)(B10H10)]] (4). Complex 3 contains an Ir2Rh backbone with two different Ir-Rh bonds (3.003(3) and 2.685(3) angstroms). The dinuclear complex 2 reacts with the mononuclear 16-electron complex 1a to give 3 in refluxing toluene. Reaction of 1a with [W(CO)3(py)3] (py = C5H5N) in the presence of BF3.EtO2 leads to the trinuclear cluster [[Cp*Ir[S2C2(B10H10)]]2W(CO)2] (5) together with [[Cp*Ir(CO)[S2C2(B10H10)]]W(CO)5] (6), and [Cp*Ir(CO)[S2C2(B10H10)]] (7). Analogous reactions of [Cp*Rh[S2C2(B10H10)]] (1 b) with [[Rh(cod)(mu-Cl)]2] were investigated and two complexes cis-[[Cp*Rh[S2C2(B10H10)]]2Rh] (8) and trans-[[Cp*Rh[S2C2(B10H10)]]2Rh] (9) were obtained. In refluxing THF solution, the cisoid 8 is converted in more than 95 % yield to the transoid 9. All new complexes 2-9 were characterized by NMR spectroscopy (1H, 11B NMR) and X-ray diffraction structural analyses are reported for complexes 2-5, 8, and 9.  相似文献   

3.
Reactions of [Tp*Rh(coe)(MeCN)](; Tp*= HB(3,5-dimethylpyrazol-1-yl)(3); coe = cyclooctene) with one equiv. of the organic disulfides, PhSSPh, TolSSTol (Tol = 4-MeC(6)H(4)), PySSPy (Py = 2-pyridyl), and tetraethylthiuram disulfide in THF at room temperature afforded the mononuclear Rh(III) complexes [Tp*Rh(SPh)(2)(MeCN)](3a), [Tp*Rh(STol)(2)(MeCN)](3b), [Tp*Rh(eta(2)-SPy)(eta(1)-SPy)](6), and [Tp*Rh(eta(2)-S(2)CNEt(2))(eta(1)-S(2)CNEt(2))](7), respectively, via the oxidative addition of the organic disulfides to the Rh(I) center in 1. For the Tp analogue [TpRh(coe)(MeCN)](2, Tp = HB(pyrazol-1-yl)(3)), the reaction with TolSSTol proceeded similarly to give the bis(thiolato) complex [TpRh(STol)(2)(MeCN)](4) as a major product but the dinuclear complex [[TpRh(STol)](2)(micro-STol)(2)](5) was also obtained in low yield. Complex 3 was treated further with the Rh(III) or Ir(III) complexes [(Cp*MCl)(2)(micro-Cl)(2)](Cp*=eta(5)-C(5)Me(5)) in THF at room temperature, yielding the thiolato-bridged dinuclear complexes [Tp*RhCl(micro-SPh)(2)MCp*Cl](8a: M = Rh, 8b: M = Ir). Dirhodium complex [TpRhCl(micro-STol)(2)RhCp*Cl](9) was obtained similarly from 4 and [(Cp*RhCl)(2)(micro-Cl)(2)]. Anion metathesis of 8a proceeds only at the Rh atom with the Cp* ligand to yield [Tp*RhCl(micro-SPh)(2)RhCp*(MeCN)][PF(6)](10), when treated with excess KPF(6) in CH(2)Cl(2)-MeCN. The X-ray analyses have been undertaken to determine the detailed structures of 3b, 4, 5, 6, 7, 8a, 9, and 10.  相似文献   

4.
Dirhodium amido complexes [(Cp*Rh)2(mu2-NHPh)(mu2-X)] (X = NHPh (2), Cl (3), OMe (4); Cp* = eta5-C5Me5) were prepared by chloride displacement of [Cp*Rh(mu2-Cl)]2 (1) and have been used as precursors to a dirhodium imido species [Cp*Rh(mu2-NPh)RhCp*]. The imido species can be trapped by PMe3 to give the adduct [Cp*Rh(mu2-NPh)Rh(PMe3)Cp*] (5) and undergoes a formal [2 + 2] cycloaddition reaction with unactivated alkynes to give the azametallacycles [Cp*Rh(mu2-eta2:eta3-R1CCR2NPh)RhCp*] (R1 = R2 = Ph (6a), R1 = H, R2 = t-Bu (6b), R1 = H, R2 = p-tol (6c)). Isolation of a relevant unsaturated imido complex [Cp*Rh(mu2-NAr)RhCp*] (7) was achieved by the use of a sterically hindered LiNHAr (Ar = 2,6-diisopropylphenyl) reagent in a metathesis reaction with 1. X-ray structures of 2, 6a, 7 and the terminal isocyanide adduct [Cp*Rh(mu2-NAr)Rh(t-BuNC)Cp*] (8) are reported.  相似文献   

5.
Ruthenium aqua complexes [(eta(6)-C(6)Me(6))Ru(II)(L)(OH(2))](2+) {L = bpy (1) and 4,4'-OMe-bpy (2), bpy = 2,2'-bipyridine, 4,4'-OMe-bpy = 4,4'-dimethoxy-2,2'-bipyridine} and iridium aqua complexes [Cp*Ir(III)(L)(OH(2))](2+) {Cp* = eta(5)-C(5)Me(5), L = bpy (5) and 4,4'-OMe-bpy (6)} act as catalysts for hydrogenation of CO(2) into HCOOH at pH 3.0 in H(2)O. The active hydride catalysts cannot be observed in the hydrogenation of CO(2) with the ruthenium complexes, whereas the active hydride catalysts, [Cp*Ir(III)(L)(H)](+) {L = bpy (7) and 4,4'-OMe-bpy (8)}, have successfully been isolated after the hydrogenation of CO(2) with the iridium complexes. The key to the success of the isolation of the active hydride catalysts is the change in the rate-determining step in the catalytic hydrogenation of CO(2) from the formation of the active hydride catalysts, [(eta(6)-C(6)Me(6))Ru(II)(L)(H)](+), to the reactions of [Cp*Ir(III)(L)(H)](+) with CO(2), as indicated by the kinetic studies.  相似文献   

6.
The N,N'-bis(sulfonyl)diaminosilane TsdmsinH(2) (TsdmsinH(2) = (CH(3))(2)Si(NHTs)(2), Ts = p-CH(3)C(6)H(4)SO(2)) reacted with [Cp*IrCl(2)](2) (Cp* = eta(5)-C(5)(CH(3))(5)) in the presence of a base to give the coordinatively unsaturated (silylenediamido)iridium complex [Cp*Ir(Tsdmsin)] (2), which was further converted to the 18e adducts [Cp*Ir(Tsdmsin)L] (L = P(C(6)H(5))(3) (3a), P(OC(2)H(5))(3), CO); the reactions of 2 and 3a with water led to the formation of the imido-bridged dinuclear complex [Cp*Ir(micro(2)-NTs)(2)IrCp*] and the bis(amido) complex [Cp*Ir(NHTs)(2){P(C(6)H(5))(3)}], respectively.  相似文献   

7.
The 16-electron half-sandwich rhodium complex [Cp*Rh{E2C2(B10H10)}] [Cp* = eta5-C5Me5, E = S (1a), Se (1b)] [Cp*Rh{E2C2(B10H10)} = eta5-pentamethylcyclopentadienyl[1,2-dicarba-closo-dodecaborane(12)-dichalcogenolato]rhodium] reacted with Mo(CO)3(py)3 in the presence of BF3.Et2O in THF solution to afford the {Cp*Rh[E2C2(B10H10)]}2Mo(CO)2 (E = S (3a); Se (3b)), {Cp*Rh[S2C2(B10H10)]}{Mo(CO)2[S2C2(B10H10)]} (4). The voluminous di-tert-butyl substituted Cp half-sandwich rhodium complex [Cp'Rh{E2C2(B10H10)}] [E = S (2a), Se (2b)] [CpRh{E2C2(B10H10)} = eta5-(1,3-di(tert-butyl)cyclopentadienyl-[1,2-dicarba-closo-dodecaborane(12)-dichalcogenolato]rhodium) reacted with W(CO)3(py)3 in the presence of BF3.Et2O in THF solution to give the {Cp'Rh[S2C2(B10H10)]}{W(CO)2[S2C2(B10H10)]} (5) and {Cp'Rh[Se2C2(B10H10)]}(mu-CO)[W(CO)3] (6), respectively. The complexes have been fully characterized by IR and NMR spectroscopy as well as by elemental analyses. The X-ray crystal structures of the complexes 3-6 are reported.  相似文献   

8.
Reactions of a dirhenium tetra(sulfido) complex [PPh(4)](2)[ReS(L)(mu-S)(2)ReS(L)] (L = S(2)C(2)(SiMe(3))(2)) with a series of group 8-11 metal complexes in MeCN at room temperature afforded either the cubane-type clusters [M(2)(ReL)(2)(mu(3)-S)(4)] (M = CpRu (2), PtMe(3), Cu(PPh(3)) (4); Cp = eta(5)-C(5)Me(5)) or the incomplete cubane-type clusters [M(ReL)(2)(mu(3)-S)(mu(2)-S)(3)] (M = (eta(6)-C(6)HMe(5))Ru (5), CpRh (6), CpIr (7)), depending on the nature of the metal complexes added. It has also been disclosed that the latter incomplete cubane-type clusters can serve as the good precursors to the trimetallic cubane-type clusters still poorly precedented. Thus, treatment of 5-7 with a range of metal complexes in THF at room temperature resulted in the formation of novel trimetallic cubane-type clusters, including the neutral clusters [[(eta(6)-C(6)HMe(5))Ru][W(CO)(3)](ReL)(2)(mu(3)-S)(4)], [(CpM)[W(CO)(3)](ReL)(2)(mu(3)-S)(4)] (M = Rh, Ir), [(Cp*Ir)[Mo(CO)(3)](ReL)(2)(mu(3)-S)(4)], [[(eta(6)-C(6)HMe(5))Ru][Pd(PPh(3))](ReL)(2)(mu(3)-S)(4)], and [(Cp*Ir)[Pd(PPh(3))](ReL)(2)(mu(3)-S)(4)] (13) along with the cationic clusters [(Cp*Ir)(CpRu)(ReL)(2)(mu(3)-S)(4)][PF(6)] (14) and [(Cp*Ir)[Rh(cod)](ReL)(2)(mu(3)-S)(4)][PF(6)] (cod = 1,5-cyclooctadiene). The X-ray analyses have been carried out for 2, 4, 7, 13, and the SbF(6) analogue of 14 (14') to confirm their bimetallic cubane-type, bimetallic incomplete cubane-type, or trimetallic cubane-type structures. Fluxional behavior of the incomplete cubane-type and trimetallic cubane-type clusters in solutions has been demonstrated by the variable-temperature (1)H NMR studies, which is ascribable to both the metal-metal bond migration in the cluster cores and the pseudorotation of the dithiolene ligand bonded to the square pyramidal Re centers, where the temperatures at which these processes proceed have been found to depend upon the nature of the metal centers included in the cluster cores.  相似文献   

9.
The reactions of [Cp*MCl2]2(Cp*=eta5-C5Me5, M = Rh, Ir) with thiacalix[4]arene (TC4A(OH)4) and tetramercaptothiacalix[4]arene (TC4A(SH)4) gave the mononuclear complexes [(Cp*M){eta3-TC4A(OH)2(O)2}] and the dinuclear complexes [(Cp*M)2{eta3eta3-TC4A(S)4}] respectively, while the analogous reactions with dimercaptothiacalix[4]arene (TC4A(OH)2(SH)2) produced the tetranuclear complexes [(Cp*M)2(Cp*MCl2)2-{eta3eta3eta1eta1-TC4A(O)2(S)2}].  相似文献   

10.
The reaction of 14e [L(Me)Rh(coe)] (1; L(Me)[double bond]ArNC(Me)CHC(Me)NAr, Ar[double bond]2,6-Me(2)C(6)H(3); coe[double bond]cis-cyclooctene) with phenyl halides and thiophenes was studied to assess the competition between sigma coordination, arene pi coordination and oxidative addition of a C-X bond. Whereas oxidative addition of the C-Cl and C-Br bonds of chlorobenzene and bromobenzene to L(Me)Rh results in the dinuclear species [[L(Me)Rh(Ph)(micro-X)](2)] (X=Cl, Br), fluorobenzene yields the dinuclear inverse sandwich complex [[L(Me)Rh](2)(anti-micro-eta(4):eta(4)-PhF)]. Thiophene undergoes oxidative addition of the C-S bond to give a dinuclear product. The reaction of 1 with dibenzo[b,d]thiophene (dbt) in the ratio 1:2 resulted in the formation of the sigma complex [L(Me)Rh(eta(1)-(S)-dbt)(2)], which in solution dissociates into free dbt and a mixture of the mononuclear complex [L(Me)Rh(eta(4)-(1,2,3,4)-dbt)] and the dinuclear complex [[L(Me)Rh](2)(micro-eta(4)-(1,2,3,4):eta(4)-(6,7,8,9)-dbt)]. The latter could be obtained selectively by the 2:1 reaction of 1 and dbt. Reaction of 1 with diethyl sulfide produces [L(Me)Rh(Et(2)S)(2)], which in the presence of hydrogen loses a diethyl sulfide ligand to give [L(Me)Rh(Et(2)S)(H(2))] and catalyses the hydrogenation of cyclooctene.  相似文献   

11.
Chromium and ruthenium complexes of the chelating phosphine borane H(3)B.dppm are reported. Addition of H(3)B.dppm to [Cr(CO)(4)(nbd)](nbd = norbornadiene) affords [Cr(CO)(4)(eta1-H(3)B.dppm)] in which the borane is linked to the metal through a single B-H-Cr interaction. Addition of H(3)B.dppm to [CpRu(PR(3))(NCMe)(2)](+)(Cp =eta5)-C(5)H(5)) results in [CpRu(PR(3))(eta1-H(3)B.dppm)][PF(6)](R = Me, OMe) which also show a single B-H-Ru interaction. Reaction with [CpRu(NCMe)(3)](+) only resulted in a mixture of products. In contrast, with [Cp*Ru(NCMe)(3)](+)(Cp*=eta5)-C(5)Me(5)) a single product is isolated in high yield: [Cp*Ru(eta2-H(3)B.dppm)][PF(6)]. This complex shows two B-H-Ru interactions. Reaction with L = PMe(3) or CO breaks one of these and the complexes [Cp*Ru(L)(eta1-H(3)B.dppm)][PF(6)] are formed in good yield. With L = MeCN an equilibrium is established between [Cp*Ru(eta2-H(3)B.dppm)][PF(6)] and the acetonitrile adduct. [Cp*Ru (eta2-H(3)B.dppm)][PF(6)] can be considered as being "operationally unsaturated", effectively acting as a source of 16-electron [Cp*Ru (eta1-H(3)B.dppm)][PF(6)]. All the new compounds (apart from the CO and MeCN adducts) have been characterised by X-ray crystallography. The solid-state structure of H(3)B.dppm is also reported.  相似文献   

12.
Two coordination polymers, {[Zn2(L)(bpy)] · 2H2O}n ( 1 ) and [Zn2(L)(bpe)]n ( 2 ) [H4L = terphenyl‐2,2′,4,4′‐tetracarboxylic acid, bpy = 4,4′‐bipyridine, and bpe = 1,2‐bis(4‐pyridyl)ethane], were hydrothermally synthesized under similar conditions and characterized by elemental analysis, IR spectroscopy, TGA, and single‐crystal X‐ray diffraction analysis. Compound 1 has a 3D framework containing Zn–O–C–O–Zn 1D chains. Compound 2 exhibits a 3D framework, which features tubular channels. The channels are occupied by bpe molecules. The differences in the structures demonstrate that the auxiliary dipyridyl‐containing ligand has a significant effect on the construction of the final framework. Additionally, the fluorescent properties of the two compounds were also studied in the solid state at room temperature.  相似文献   

13.
Rhodium(III) and iridium(III) complexes containing bis(pyrazolyl)methane ligands (pz = pyrazole, L' in general; specifically, L1 = H2C(pz)2, L2 = H2C(pzMe2)2, L3 = H2C(pz4Me)2, L4 = Me2C(pz)2), have been prepared in a study exploring the reactivity of these ligands toward [Cp*MCl(mu-Cl)]2 dimers (M = Rh, Ir; Cp* = pentamethylcyclopentadienyl). When the reaction was carried out in acetone solution, complexes of the type [Cp*M(L')Cl]Cl were obtained. However, when L1 and L2 ligands have been employed with excess [Cp*MCl(mu-Cl)]2, the formation of [Cp*M(L')Cl][Cp*MCl3] species has been observed. PGSE NMR measurements have been carried out for these complexes, in which the counterion is a cyclopentadienyl metal complex, in CD2Cl2 as a function of the concentration. The hydrodynamic radius (rH) and, consequently, the hydrodynamic volume (VH) of all the species have been determined from the measured translational self-diffusion coefficients (Dt), indicating the predominance of ion pairs in solution. NOE measurements and X-ray single-crystal studies suggest that the [Cp*MCl3]- approaches the cation, orienting the three Cl-legs of the "piano-stool" toward the CH2 moieties of the bis(pyrazolyl)methane ligands. The reaction of 1 equiv of [Cp*M(L')Cl]Cl or [Cp*M(L')Cl][Cp*MCl3] with 1 equiv of AgX (X = ClO4 or CF3SO3) in CH2Cl2 allows the generation of [Cp*M(L')Cl]X, whereas the reaction of 1 equiv of [Cp*M(L')Cl] with 2 equiv of AgX yields the dicationic complexes [Cp*M(L')(H2O)][X]2, where single water molecules are directly bonded to the metal atoms. The solid-state structures of a number of complexes were confirmed by X-ray crystallographic studies. The reaction of [Cp*Ir(L')(H2O)][X]2 with ammonium formate in water or acetone solution allows the generation of the hydride species [Cp*Ir(L')H][X].  相似文献   

14.
[Rh(Cp)Cl(mu-Cl)](2) (Cp = pentamethylcyclopentadienyl) reacts (i) with [Au(NH=CMe(2))(PPh(3))]ClO(4) (1:2) to give [Rh(Cp)(mu-Cl)(NH=CMe(2))](2)(ClO(4))(2) (1), which in turn reacts with PPh(3) (1:2) to give [Rh(Cp)Cl(NH=CMe(2))(PPh(3))]ClO(4) (2), and (ii) with [Ag(NH=CMe(2))(2)]ClO(4) (1:2 or 1:4) to give [Rh(Cp)Cl(NH=CMe(2))(2)]ClO(4) (3) or [Rh(Cp)(NH=CMe(2))(3)](ClO(4))(2).H(2)O (4.H(2)O), respectively. Complex 3 reacts (i) with XyNC (1:1, Xy = 2,6-dimethylphenyl) to give [Rh(Cp)Cl(NH=CMe(2))(CNXy)]ClO(4) (5), (ii) with Tl(acac) (1:1, acacH = acetylacetone) or with [Au(acac)(PPh(3))] (1:1) to give [Rh(Cp)(acac)(NH=CMe(2))]ClO(4) (6), (iii) with [Ag(NH=CMe(2))(2)]ClO(4) (1:1) to give 4, and (iv) with (PPN)Cl (1:1, PPN = Ph(3)P=N=PPh(3)) to give [Rh(Cp)Cl(imam)]Cl (7.Cl), which contains the imam ligand (N,N-NH=C(Me)CH(2)C(Me)(2)NH(2) = 4-imino-2-methylpentan-2-amino) that results from the intramolecular aldol-type condensation of the two acetimino ligands. The homologous perchlorate salt (7.ClO(4)) can be prepared from 7.Cl and AgClO(4) (1:1), by treating 3 with a catalytic amount of Ph(2)C=NH, in an atmosphere of CO, or by reacting 4with (PPN)Cl (1:1). The reactions of 7.ClO(4) with AgClO(4) and PTo(3) (1:1:1, To = C(6)H(4)Me-4) or XyNC (1:1:1) give [Rh(Cp)(imam)(PTo(3))](ClO(4))(2).H(2)O (8) or [Rh(Cp)(imam)(CNXy)](ClO(4))(2) (9), respectively. The crystal structures of 3 and 7.Cl have been determined.  相似文献   

15.
Reactions of [Tp*Rh(coe)(MeCN)](1; Tp*= hydrotris(3,5-dimethylpyrazol-1-yl); coe = cyclooctene) with one equiv of diphenyl dichalcogenides PhEEPh (E = Se, Te) afforded the mononuclear Rh(III) complexes [Tp*Rh(EPh)(2)(MeCN)](2b: E = Se; 2c: E = Te), as reported previously for the formation of [Tp*Rh(SPh)(2)(MeCN)](2a) from the reaction of 1 and PhSSPh. Complexes 2a-2c were treated with the Ru(II) complex [(Cp*Ru)(4)(mu(3)-Cl)(4)](Cp*=eta(5)-C(5)Me(5)) in THF at room temperature, yielding the chalcogenolato-bridged dinuclear complexes [Tp*RhCl(mu-EPh)(2)RuCp*(MeCN)](3). Complex 3a (E = S) in solution was converted slowly into a mixture of 3a and the sterically less encumbered dinuclear complex [Tp*RhCl(SPh)(mu-eta(1)-S-eta(6)-Ph)RuCp*](4a) at room temperature. In 4a, one SPh group binds only to the Rh center as a terminal ligand, while the other SPh group bridges the Rh and Ru atoms by coordinating to the former at the S atom and to the latter with the Ph group in a pi fashion. The Se analogue 3b also underwent a similar transformation under more forcing conditions, e.g. in benzene at reflux, whereas formation of the mu-eta(1)-Te-eta(6)-Ph complex was not observed for the Te analogue 3c even under these forcing conditions. When complexes 3 was dissolved in THF exposed to air, the MeCN ligand bound to Ru was substituted by dioxygen to give the peroxo complexes [Tp*RhCl(mu-EPh)(2)RuCp*(eta(2)-O(2))](5a: E = S; 5b: E = Se; 5c: E = Te). X-Ray analyses have been undertaken to determine the detailed structures for 2c, 3a, 3b, 4a, 5a, 5b, and 5c.  相似文献   

16.
Treatment of [RhCl(eta4-diene)]2 (diene = nbd, cod) with the N-heterocyclic ligands 2,2'-bipyridine (bpy), 4,4'-dimethyl-2,2'-bipyridine (Me2bpy), 1,10-phenanthroline (phen), and pyridine (py) followed by addition of Cs[arachno-6-SB9H12] affords the corresponding salts, [Rh(eta4-diene)(L2)][SB9H12] [diene = cod, L2 = bpy (1), Me2bpy (3), phen (5), (py)2 (7); diene = nbd, L2 = bpy (2), Me2bpy (4), phen (6), (py)2 (8)]. These compounds are characterized by NMR spectroscopy and mass spectrometry, and in addition, the cod-Rh species 1 and 3 are studied by X-ray diffraction analysis. These saltlike reagents are stable in the solid state, but in solution the rhodium(I) cations, [Rh(eta4-diene)(L2)]+, react with the polyhedral anion [SB9H12]- leading to a chemistry that is controlled by the d8 transition element chelates. The nbd-Rh(I) complexes react faster than the cod-Rh(I) counterparts, leading, depending on the conditions, to the synthesis of new rhodathiaboranes of general formulas [8,8-(L2)-nido-8,7-RhSB9H10] [L2 = bpy (9), Me2bpy (10), phen (11), (py)2 (12)] and [8,8-(L2)-8-(L')-nido-8,7-RhSB9H10] [L' = PPh3, L2 = bpy (13), Me2bpy (14), phen (15); L' = NCCH3, L2 = bpy (16), Me2bpy (17), phen (18)]. Compound 13 is characterized by X-ray diffraction analysis confirming the 11-vertex nido-structure of the rhodathiaborane analogues 14-18. In dichloromethane, 1 and 3 yield mixtures that contain the 11-vertex rhodathiaboranes 9 and 10 together with new species. In contrast, the cod-Rh(I) reagent 5 affords a single compound, which is proposed to be an organometallic rhodium complex bound exo-polyhedrally to the thiaborane cage. In the presence of H2(g) and stoichiometric amounts of PPh3, the cod-Rh(I) reagents, 1, 3, and 5, afford the salts [Rh(H)2(L2)(PPh3)2][SB9H12] [L2 = bpy (19), Me2bpy (20), phen (21)]. Similarly, in an atmosphere of CO(g) and in the presence of PPh3, compounds 1-6 afford [Rh(L2)(PPh3)2(CO)][SB9H12] (L2 = bpy (22), Me2bpy (23), phen (24)]. The structures of 19 and 24 are studied by X-ray diffraction analysis. The five-coordinate complexes [Rh(L2)(PPh3)2(CO)]+ undergo PPh3 exchange in a process that is characterized as dissociative. The observed differences in the reactivity of the nbd-Rh(I) salts versus the cod-Rh(I) analogues are rationalized on the basis of the higher kinetic lability of the nbd ligand and its faster hydrogenation relative to the cod diene.  相似文献   

17.
Reaction of the 17-electron radical (*)Cr(CO)(3)Cp* (Cp* = C(5)Me(5)) with 0.5 equiv of 2-aminophenyl disulfide [(o-H(2)NC(6)H(4))(2)S(2)] results in rapid oxidative addition to form the initial product (o-H(2)N)C(6)H(4)S-Cr(CO)(3)Cp*. Addition of a second equivalent of (*)Cr(CO)(3)Cp* to this solution results in the formation of H-Cr(CO)(3)Cp* as well as (1)/(2)[[eta(2)-o-(mu-NH)C(6)H(4)S]CrCp*](2). Spectroscopic data show that (o-H(2)N)C(6)H(4)S-Cr(CO)(3)Cp* loses CO to form [eta(2)-(o-H(2)N)C(6)H(4)S]Cr(CO)(2)Cp*. Attack on the N-H bond of the coordinated amine by (*)Cr(CO)(3)Cp* provides a reasonable mechanism consistent with the observation that both chelate formation and oxidative addition of the N-H bond are faster under argon than under CO atmosphere. The N-H bonds of uncoordinated aniline do not react with (*)Cr(CO)(3)Cp*. Reaction of the 2 mol of (*)Cr(CO)(3)Cp* with 1,2-benzene dithiol [1,2-C(6)H(4)(SH)(2)] yields the initial product (o-HS)C(6)H(4)S-Cr(CO)(3)Cp and 1 mol of H-Cr(CO)(3)Cp*. Addition of 1 equiv more of (*)Cr(CO)(3)Cp to this solution also results in the formation of 1 equiv of H-Cr(CO)(3)Cp*, as well as the dimeric product (1)/(2)[[eta(2)-o-(mu-S)C(6)H(4)S]CrCp*](2). This reaction also occurs more rapidly under Ar than under CO, consistent with intramolecular coordination of the second thiol group prior to oxidative addition. The crystal structures of [[eta(2)-o-(mu-NH)C(6)H(4)S]CrCp*](2) and [[eta(2)-o-(mu-S)C(6)H(4)S]CrCp*](2) are reported.  相似文献   

18.
The reaction of Cp*RhCl2(PPh3) 1 with 1-alkyne and H2O in the presence of KPF6 afforded the alkenyl ketone complex [Cp*Rh(PPh3)(CPh=CHCOCH2R)](PF6) [R = p-tolyl (3a), R = Ph (3b)], whereas Cp*IrCl2(PPh3) 2 or [(eta 6-C6Me6)RuCl2(PPh3) gave the corresponding [Cp*IrCl(CO)(PPh3)](PF6) 5a and [(eta 6-C6Me6)RuCl(CO)(PPh3)](PF6).  相似文献   

19.
Reaction of [Cp*IrCl2]2 (1) with dpmp in the presence of KPF6 afforded a binuclear complex [Cp*IrCl(dpmp-P1,P2;P3)IrCl2Cp*](PF6) (2) (dpmp =(Ph2PCH2)2PPh). The mononuclear complex [Cp*IrCl(dpmp-P1,P2)](PF6) (4) was generated by the reaction of [Cp*IrCl2(BDMPP)](BDMPP =PPh[2,6-(MeO)2C6H3]2) with dpmp in the presence of KPF6. These mono- and binuclear complexes have four-membered ring structures with a terminal and a central P atom of the dpmp ligand coordinated to an iridium atom as a bidentate ligand. Since there are two chiral centers at the Ir atom and a central P2 atom, there are two diastereomers that were characterized by spectrometry. Complexes anti-4 and syn-4 reacted with [Cp*RhCl2]2 or [(C6Me6)RuCl2]2, giving the corresponding mixed-metal complexes, anti- and syn- [Cp*IrCl(dppm-P1,P2;P3)MCl2L](PF6) (6: M = Rh, L = Cp*; 7: M = Ru, L = C6Me6). Treatment with AuCl(SC4H8) gave tetranuclear complexes, anti- and syn-8 [[Cp*IrCl(dppm-P1,P2;P3)AuCl]2](PF6)2 bearing an Au-Au bond. Reaction of anti- with PtCl2(cod) generated the trinuclear complex anti-9, anti-[[Cp*IrCl(dppm-P1,P2;P3)]2PtCl2](PF6)2. These reactions proceeded stereospecifically. The P,O-chelated complex syn-[Cp*IrCl(BDMPP-P,O)] (syn-10)(BDMPP-P,O = PPh[2,6-(MeO)2C6H3][2-O-6-(MeO)C6H3]2) reacted with dpmp in the presence of KPF6, generating the corresponding anti-complex as a main product as well as a small amount of syn-complex, [Cp*Ir(BDMPP-P,O)(dppm-P1)](PF6) (11). The reaction proceeded preferentially with inversion. The reaction processes were investigated by PM3 calculation. anti- was treated with MCl2(cod), giving anti-[Cp*Ir(BDMPP-P,O)(dppm-P1;P2,P3)MCl2](PF6)(14: M = Pt; 15: M = Pd), in which the MCl2 moiety coordinated to the two free P atoms of anti-11. The X-ray analyses of syn-2, anti-2, anti-4, anti-8 and anti-11 were performed.  相似文献   

20.
Chemoselective synthesis and isolation of alkynyl [Cp*Ir(III)(bpy)CCPh]+ (2, Cp* = eta5-C5Me5, bpy = 2,2'-bipyridine), acyl [Cp*Ir(III)(bpy)C(O)CH2Ph]+ (3), and ketonyl [Cp*Ir(III)(bpy)CH2C(O)Ph]+ (4) intermediates in anti-Markovnikov and Markovnikov hydration of phenylacetylene in water have been achieved by changing the pH of the solution of a water-soluble aqua complex [Cp*Ir(III)(bpy)(H2O)]2+ (1) used as the same starting complex. The alkynyl complex [2]2.SO4 was synthesized at pH 8 in the reaction of 1.SO4 with H2O at 25 degrees C, and was isolated as a yellow powder of 2.X (X = CF3SO3 or PF6) by exchanging the counteranion at pH 8. The acyl complex [3]2.SO4 was synthesized by changing the pH of the aqueous solution of [2]2.SO4 from 8 to 1 at 25 degrees C, and was isolated as a red powder of 3.PF6 by exchanging the counteranion at pH 1. The hydration of phenylacetylene with 1.SO4 at pH 4 at 25 degrees C gave a mixture of [2]2.SO4 and [4]2.SO4. After the counteranion was exchanged from SO4(2-) to CF3SO3-, the ketonyl complex 4.CF3SO3 was separated from the mixture of 2.CF3SO3 and 4.CF3SO3 because of the difference in solubility at pH 4 in water. The structures of 2-4 were established by IR with 13C-labeled phenylacetylene (Ph12C13CH), electrospray ionization mass spectrometry (ESI-MS), and NMR studies including 1H, 13C, distortionless enhancement by polarization transfer (DEPT), and correlation spectroscopy (COSY) experiments. The structures of 2.PF6 and 3.PF6 were unequivocally determined by X-ray analysis. Protonation of 3 and 4 gave an aldehyde (phenylacetaldehyde) and a ketone (acetophenone), respectively. Mechanism of the pH-selective anti-Markovnikov vs Markovnikov hydration has been discussed based on the effect of pH on the formation of 2-4. The origins of the alkynyl, acyl, and ketonyl ligands of 2-4 were determined by isotopic labeling experiments with D2O and H2(18)O.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号