首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Summary It is shown that a compressible elastic body — not necessarily homogeneous or isotropic — is hyperelastic provided the work done by all external forces acting on an arbitrary part of the body vanishes for every sufficiently smooth cyclic motion in which each material point returns to its initial position with a velocity equal to its initial velocity. Dedicated to Clifford Truesdell on his 60 th Birthday  相似文献   

2.
Kuang-Chong Wu   《Wave Motion》2004,40(4):359-372
The problem of a semi-infinite crack subjected to an incident stress wave in a general anisotropic elastic solid is considered. The plane wave impinges the crack at a general oblique angle and is of any of the three types propagating in that direction. A related problem of a semi-infinite crack loaded by a pair of concentrated forces moving along the crack surfaces is also considered. In contrast to the conventional approach by Laplace transforms, a Stroh-like formalism is employed to construct the solution directly in the time domain. The solution is shown to depend on a Wiener–Hopf factorization of a symmetric matrix. Closed-form solution of the stress intensity factors is derived. A remarkably simple expression for the energy release rate is obtained for normal incidence.  相似文献   

3.
A. L. Shuvalov 《Wave Motion》2001,34(4):401-429
In the theory of plane inhomogeneous elastic waves, the complex wave vector constituted by two real vectors in a given plane may be described with the aid of two complex scalar parameters. Either of those parameters may be taken as a free one in the characteristic condition assigned to the wave equation. This alternative underlies the two fundamental approaches in the theory, namely, one associated with the Stroh eigenvalue problem and the other with the generalized Christoffel eigenvalue problem. The two approaches are identical insofar as a partial nondegenerate wave solution (partial mode) is concerned, but they differ in the fundamental solution (wave packet) assembling, and their dissimilarity is also revealed in the presence of degeneracies, which may involve either of the two governing parameters or both of them. Therefore, use of both approaches is essential for studying the degeneracy phenomenon in the theory of inhomogeneous waves. The criteria for different types of degeneracy, related to a double eigenvalue of the Stroh matrix or the Christoffel matrix and at the same time to a repeated root of the characteristic condition, are formulated by appeal to the matrix algebra and to the theory of polynomial equations. On this basis, dimensions of the manifolds, associated with degeneracy of different types in the space of variables, are established for elastic media of unrestricted anisotropy. The relation to the boundary-value problems is discussed.  相似文献   

4.
Surface and interfacial impedance matrices play an important role in the construction of Green's functions, the analysis of surface and interfacial waves and the stability assessment of pre-stressed half-spaces or joined half-spaces. This paper studies these matrices for generally anisotropic pre-stressed incompressible elastic materials. It is shown that the surface-impedance matrix satisfies a simple matrix equation which, for plane-strain deformations, can be solved exactly. As a result, explicit secular equations for surface and interfacial wave speeds and explicit wrinkling/buckling conditions for pre-stressed half-spaces and joined half-spaces are obtained. It is also shown that the plane-strain surface-wave problem is mathematically identical to the edge-wave problem for thin elastic plates. Thus, the uniqueness of surface-wave speed is settled by drawing upon a recent proof of the uniqueness of edge-wave speed. Examples are used to show that it is straightforward to solve the secular equations based on the given formulae either exactly (where possible) or numerically.  相似文献   

5.
T.C.T. Ting   《Wave Motion》2009,46(5):323-335
It is known that a subsonic surface (Rayleigh) wave exists in an anisotropic elastic half-space x2  0 if the first transonic state is not of Type 1. If the first transonic state is of Type 1 but the limiting wave is not exceptional, a subsonic surface wave exists. If the first transonic state is of Type 1 and the limiting wave is exceptional, a subsonic surface wave exists when . It is shown that an exceptional body wave is necessarily an exceptional transonic wave, and could be an exceptional limiting wave. Only two wave speeds are possible for an exceptional body wave. We present explicit conditions in terms of the reduced elastic compliances for the existence of an exceptional body wave. If an exceptional body wave exists, conditions are given for identifying whether the transonic state is of Type 1. Hence, through the existence of an exceptional body wave we provide explicit conditions for the existence of a subsonic surface wave with the exception when needs to be computed.  相似文献   

6.
Mode-I crack growth under conditions of generalized plane stress has been investigated. It has been assumed that near the plane of the crack in the loading zone, the simple stress components corresponding to a central fan field maintain validity up to the elastic-plastic boundary. By the use of expansions of the particle velocities in the coordinate y, and by matching of the relevant stress components and particle velocities to the dominant terms of appropriate elastic fields at the elastic-plastic boundary, a complete solution has been obtained for εy in the plane of the crack. The solution applies from the propagating crack tip up to the moving elastic-plastic boundary. The strain fields for a self-similar crack nucleating at a point and for steady-state propagation of a crack have been considered as special cases.  相似文献   

7.
《Wave Motion》1986,8(1):65-75
The acoustoelasticity in a stressed monoclinic elastic material is analyzed theoretically. It is assumed that the material has weak anisotropy, such that the second-order elastic constants differ slightly from those of an isotropic material and the third-order elastic constants retain general monoclinic anisotropy. The propagation velocities, the polarization directions and the acoustoelastic effects for principal longitudinal and transverse waves are obtained and presented as functions of the elastic constants, principal stresses and directions of principal axes of stress. The coefficients appearing in the formulas are tabulated for Laue groups.  相似文献   

8.
9.
10.
In the linear theory of elasticity, Saint-Venant's principle is used to justify the neglect of edge effects when determining stresses in a body. For isotropic materials, the validity of this is well established. However for anisotropic and composite materials, experimental results have shown that edge effects may persist much farther into the material than for isotropic materials and as a result cannot be neglected. This paper further examines the effects of material anisotropy on the exponential decay rate for stresses in a semi-infinite elastic strip. A linearly elastic semi-infinite strip in a state of plane stress/strain subject to a self-equilibrated end load is considered first for a specially orthotropic material and then for the general anisotropic material. The problem is governed by a fourth-order elliptic partial differential equation with constant coefficients. In the former case, just a single dimensionless material parameter appears, while in the latter, only three dimensionless parameters are required. Energy methods are used to establish lower bounds on the actual stress decay rate. Both analytic and numerical estimates are obtained in terms of the elastic constants of the material and results are shown for several contemporary engineering materials. When compared with the exact stress decay rate computed numerically from the eigenvalues of a fourth-order ordinary differential equation, the results in some cases show a high degree of accuracy. In particular, for strongly orthotropic materials, an asymptotic estimate provides extremely accurate estimates for the decay rate. Results of the type obtained here have several important practical applications. For example, they provide physical insight into the mechanical testing of anisotropic and laminated composite structures (including the off-axis tension test), are useful in assessing the influence of fasteners, joints, etc. on the behavior of composite structures and allow for tailoring a material with specific properties to ensure that local stresses attenuate at a desired rate.  相似文献   

11.
The purpose of this work is the formulation and discussion of an approach to the modelling of anisotropic elastic and inelastic material behaviour at large deformation. This is done in the framework of a thermodynamic, internal-variable-based formulation for such a behaviour. In particular, the formulation pursued here is based on a model for plastic or inelastic deformation as a transformation of local reference configuration for each material element. This represents a slight generalization of its modelling as an elastic material isomorphism pursued in earlier work, allowing one in particular to incorporate the effects of isotropic continuum damage directly into the formulation. As for the remaining deformation- and stress-like internal variables of the formulation, these are modelled in a fashion formally analogous to so-called structure tensors. On this basis, it is shown in particular that, while neither the Mandel nor back stress is generally so, the stress measure thermodynamically conjugate to the plastic “velocity gradient”, containing the difference of these two stress measures, is always symmetric with respect to the Euclidean metric, i.e., even in the case of classical or induced anisotropic elastic or inelastic material behaviour. Further, in the context of the assumption that the intermediate configuration is materially uniform, it is shown that the stress measure thermodynamically conjugate to the plastic velocity gradient is directly related to the Eshelby stress. Finally, the approach is applied to the formulation of metal plasticity with isotropic kinematic hardening.  相似文献   

12.
Plane deformations of a curved strip, composed of an homogeneous cylindrically anisotropic linearly elastic material, are considered. The strip is in equilibrium under the action of end loads, with the lateral sides traction-free. Two conservation properties for certain cross-sectional stress measures are established, generalizing previously known results for the case of a rectangular strip. Such conservation properties are useful in assessing the influence of material anisotropy on Saint-Venant's principle, as well as in establishing convexity properties for cross-sectional stress measures. In particular, it is anticipated that the results should be useful in determining the extent of edge effects in the testing of anisotropic and composite curved strips.  相似文献   

13.
The paper presents theoretical results on the interaction of cubically nonlinear harmonic elastic plane waves in a nonlinear material described by the Murnaghan potential. The interaction of two harmonic transverse waves is studied using the method of slowly varying amplitude. Reduced and evolution equations and the Manley-Rowe relations are derived. An analysis is made of the mechanism of energy transfer from the strong pumping wave, which has frequency ω, to the weak signal wave, which has frequency 3ω because of this interaction. A switching mechanism for hypersonic waves in a nonlinear elastic material is described, which is similar to the switching mechanism observed in transistors __________ Translated from Prikladnaya Mekhanika, Vol. 42, No. 6, pp. 61–70, June 2006.  相似文献   

14.
Novosibirsk. Translated from Prikladnaya Mekhanika i Tekhnicheskaya Fizika, No. 3, pp. 168–173, May–June, 1994.  相似文献   

15.
Plane deformations of a rectangular strip, composed of an homogeneous fully anisotropic linearly elastic material, are considered. The strip is in equilibrium under the action of end loads, with the lateral sides traction-free. Two conservation properties for certain cross-sectional stress measures are established, generalizing previously known results for the isotropic case. It is noteworthy that in the first of these conservation laws only one of the off-axis elastic constants appears explicitly while in the second only the opposite off-axis constant appears explicitly. Such conservation properties are useful in assessing the influence of material anisotropy on Saint-Venant's principle, as well as in establishing convexity properties for cross-sectional stress measures. In particular, it is anticipated that the results should be useful in determining the extent of edge effects in the off-axis testing of anisotropic and composite materials.  相似文献   

16.
17.
Wire ropes, DNA strands and helical springs are among those bodies which can be modeled as an elastic rod with a helical substructure. The resulting form of the strain-energy function is a matter of material symmetry. This symmetry is explored using a novel treatment which combines non-affine transformations and a relabeling of the material coordinates. The restrictions this treatment imposes on the strain-energy function include a periodic dependency on torsional strain. In addition, comparisons are made with results from a recent treatment of helical symmetry by Healey. Finally, conclusions applicable to material symmetry restrictions for other polar elastic continua are presented.  相似文献   

18.
IntroductionUptonow,therehavebenmanyresearchesontheplaneweldingproblemofisotropicmaterials.e.g.[1]and[2]etc.However,forthepla...  相似文献   

19.
This paper considers a frictionless receding contact problem between an anisotropic elastic layer and an anisotropic elastic half plane, when the two bodies are pressed together by means of a rigid circular stamp. The problem is reduced to a system of singular integral equations in which the contact stresses and lengths are the unknown functions. Numerical results for the contact stresses and the contact lengths are given by depending on various fibre orientations.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号