首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A nucleoside with two nucleobases, a so-called double-headed nucleoside, 5'(S)-C-(thymine-1-ylmethyl)thymidine 3, is synthesised and incorporated into oligonucleotides. The additional nucleobase is hereby positioned in the minor groove of the duplexes, which are formed with complementary DNA and RNA-sequences. Slight thermal destabilisation of these duplexes as compared to unmodified duplexes is observed. With other target sequences forming bulged duplexes or three-way junctions, no additional influence of the additional base on the thermal stability is observed. On the other hand, a base-base stacking interaction and subsequent stabilisation is observed when two double-headed nucleotide moieties are positioned in two complementary DNA-sequences forming a DNA-zipper motif.  相似文献   

2.
In this work we present the results of a molecular simulation study of the interaction between a tetracationic bis iron(II) supramolecular cylinder, [Fe2(C25H20N4)3]4+, and DNA. This supramolecular cylinder has been shown to bind in the major groove of DNA and to induce dramatic coiling of the DNA. The simulations have been designed to elucidate the interactions that lead the cylinder to target the major groove and that drive the subsequent DNA conformational changes. Three sets of multi-nanosecond simulations have been performed: one of the uncomplexed d(CCCCCTTTTTCC) d(GGAAAAAGGGGG) dodecamer; one of this DNA complexed with the cylinder molecule; and one of this DNA complexed with a neutralised version of the cylinder. Coiling of the DNA was observed in the DNA-cylinder simulations, giving insight into the molecular level nature of the supramolecular coiling observed experimentally. The cylinder charge was found not to be essential for the DNA coiling, which implies that the DNA response is moderated by the short range interactions that define the molecular shape. Cylinder charge did, however, affect the integrity of the DNA duplex, to the extent that, under some circumstances, the tetracationic cylinder induced defects in the DNA base pairing at locations adjacent to the cylinder binding site.  相似文献   

3.
The impact of cooperativity between intermolecular interactions is demonstrated by the molecular self-recognition properties of highly enantioselective epi-cinchona bifunctional thiourea organocatalysts. Low-temperature NMR experiments in inert solvents have revealed two sets of nonequivalent resonances in equal population for thiourea-modified members of the epi-quinine and epi-quinidine families. In solution, the predominance of an asymmetric (C1) dimeric self-assembly with noteworthy structural motifs became evident: simultaneous intra- and intermolecular thiourea hydrogen bonding and a CH/pi interaction were observed. Both the stereochemical and the diverse conformational features of the system favor the observed quinoline T-shaped aromatic pi-pi stacking interaction. The structure findings are supported by quantitative proton-proton distance data that were available from NOE buildup curves. The 3D structure of the dimeric assembly has been modeled in agreement with the H-H distance restraints. Owing to the geometrical preference associated with the dimerization process, the self-assembled bifunctional system is interpreted as a charge-transfer complex with the potential for catalyst self-activation.  相似文献   

4.
Protein-carbohydrate recognition is of fundamental importance for a large number of biological processes; carbohydrate-aromatic stacking is a widespread, but poorly understood, structural motif in this recognition. We describe, for the first time, the measurement of carbohydrate-aromatic interactions from their contribution to the stability of a dangling-ended DNA model system. We observe clear differences in the energetics of the interactions of several monosaccharides with a benzene moiety depending on the number of hydroxy groups, the stereochemistry, and the presence of a methyl group in the pyranose ring. A fucose-benzene pair is the most stabilizing of the studied series (-0.4 Kcal mol(-1)) and this interaction can be placed in the same range as other more studied interactions with aromatic residues of proteins, such as Phe-Phe, Phe-Met, or Phe-His. The noncovalent forces involved seem to be dispersion forces and nonconventional hydrogen bonds, whereas hydrophobic effects do not seem to drive the interaction.  相似文献   

5.
The arene-perfluoroarene stacking interaction was studied by experimental and theoretical methods. A series of compounds with different possibilities for formation of this recognition motif in the solid state were synthesized, and their crystal structures determined by single-crystal X-ray diffraction. The crystal packing of these compounds, as well as the packing of related compounds retrieved from crystallographic databases, were analyzed with quantitative crystal potentials: total lattice energies and the cohesive energies of closest molecular pairs in the crystals were calculated. The arene-perfluoroarene recognition motif emerges as a dominant interaction in the non-hydrogen-bonding compounds studied here, to the point that asymmetric dimers formed over the stacking motif carry over to asymmetric units made of two molecules in the crystal both for pure compounds and for molecular complexes; however, inter-ring distances and angles range from 3.70 to 4.85 A and from 5 to 21 degrees , respectively. Pixel energy partitioning reveals that whenever aromatic rings stack, the largest cohesive energy contribution comes from dispersion, which roughly amounts to 20 kJ mol(-1) per phenyl ring, while the coulombic term is minor but significant enough to make a difference between the arene-arene or perfluoroarene-perfluoroarene interactions on the one hand, and arene-perfluoroarene interactions on the other, whereby the latter are favored by about 10 kJ mol(-1) per phenyl ring. No evidence of special interaction which can be attributed to HF confrontation was recognizable.  相似文献   

6.
The geometries of DNA hexamer (5'-GGAACC-3') and DNA 13-mer (5'-GCGTACACATGCG-3') have been determined by molecular dynamics (MD) simulations using an empirical force field. The central canonical base pair was replaced by a pair of nonpolar base analogues, 2,2'-bipyridyl and 3-methylisocarbostyril. The stabilization energy of the model system (model A) consisting of a central base pair (base-analogue pair) and two neighboring base pairs was determined by the RI-MP2 method using an extended aug-cc-pVDZ basis set. The geometry of the model was averaged from structures determined by MD simulations. The role of the solvent was covered by the COSMO continuum solvent model and calculations were performed for a larger model system (model B) which also contained a sugar-phosphate backbone. The total stabilization energies of the unperturbed system and the system perturbed by a base-analogue pair (model A) were comparable to the stability of both duplexes experimentally determined. This is due to large stacking interaction energy of the base-analogue self-pair which compensates for the missing hydrogen-bonding energy of the replaced adenine...thymine base pair. The selectivity of the base-analogue pair was reproduced (model B) when their desolvation energy was included with the interaction energy of both strands determined by the approximate SCC-DFTB-D method.  相似文献   

7.
Cationic aryl triazole oligomers have been synthesized through “click chemistry”. The results show that cationic aryl triazole oligomers adopt a helical conformation in water or in a mixture of water and methanol, but prevail as a random‐coiled conformation in methanol. Importantly, circular dichroism spectroscopy and dynamic light scattering experiments revealed that cationic oligomers aggregated intermolecularly to form higher order architectures with a helical sense opposite to that of the individual helix, which eventually led to the formation of aggregates with sizes in the range 100–500 nm. The aggregation of cationic oligomers was governed by the concentration and polarity of the environment. More interestingly, cationic foldamers were able to recognize chloride and fluoride anions in aqueous solution. The recognition consequently destabilized intermolecular aggregation.  相似文献   

8.
The development of novel dendrimers containing oligospiroketal (OSK) rods as building blocks is described. The linkage between the core unit (CU), branching units (BU), and OSK rods relies on the CuAAC reaction between terminal alkynes and azides. Two different strategies of dendrimer synthesis were investigated and it was found that the convergent approach is clearly superior to the divergent one. SAXS measurements and MD simulations indicate that the obtained dendrimer features a globular structure with very low density. Obviously, the OSK rods stabilize a rather loose mass‐fractal structure.  相似文献   

9.
The synthesis and X-ray structural characterisation of a new Cu(II) complex, [Cu(L1)Cl](ClO4)·CH3OH (1) [L1 = N,N′-bis((pyridine-2-yl)phenylidene)-1,3-diaminopropan-2-ol], has been described in this work. The structural study reveals that the Cu(II) centre in 1 has a square pyramidal geometry with a trigonality index τ = 0.43, being coordinated by the organic ligand and a chloro group. The interaction of complex 1 and another complex previously reported by our group, [Cu(L2)](ClO4)2 (2) [L2 = N-(1-pyridin-2-yl-phenylidene)-N′-[2-({2-[(1-pyridin-2-ylphenylidene)amino]ethyl}amino)ethyl]ethane-1,2diamine], with calf thymus DNA (CT-DNA) has been investigated using absorption and emission spectral studies. The binding constant (Kb) and the linear Stern-Volmer quenching constant (Ksv) have been determined.  相似文献   

10.
Even saturated carbocycles are compatible with Watson–Crick pairing, as shown by the incorporation of phenylcyclohexyl‐C‐nucleoside pairs into the center of a DNA double helix (see picture). The increase in duplex stability arises from cyclohexyl/phenyl CH/π interactions. This makes the system an interesting scaffold for studying hydrophobic interactions and allows for the incorporation of additional molecular entities into the double helix.

  相似文献   


11.
The duplex-DNA binding properties of a nonintercalating polypyridyl ruthenium(II) complex that incorporates a linear extended ligand with a catechol moiety has been probed with a variety of photo- and biophysical techniques. These studies reveal that the complex groove binds to DNA sequences biphasically, and displays binding constants equivalent to those of high-affinity metallointercalators. The complex also displays preferential binding to AT-rich sequences. Changes in the structure of the coordinated catechol ligand and the incorporation of intercalating ancillary ligands into the complex were found to modulate both the optical-binding response and binding parameters of the system, which indicates that the catechol moiety plays a crucial role in the observed enhancement to binding affinities.  相似文献   

12.
The neutral compounds [Pt(bzq)(CN)(CNR)] (R=tBu ( 1 ), Xyl ( 2 ), 2‐Np ( 3 ); bzq= benzoquinolate, Xyl=2,6‐dimethylphenyl, 2‐Np=2‐napthyl) were isolated as the pure isomers with a trans‐Cbzq,CNR configuration, as confirmed by 13C{1H} NMR spectroscopy in the isotopically marked [Pt(bzq)(13CN)(CNR)] (R=tBu ( 1′ ), Xyl ( 2′ ), 2‐Np ( 3′ )) derivatives (δ13CCN≈110 ppm; 1J(Pt,13C)≈1425 Hz]. By contrast, complex [Pt(bzq)(C≡CPh)(CNXyl)] ( 4 ) with a trans‐Nbzq,CNR configuration, has been selectively isolated from [Pt(bzq)Cl(CNXyl)] (trans‐Nbzq,CNR) using Sonogashira conditions. X‐ray diffraction studies reveal that while 1 adopts a columnar‐stacked chain structure with Pt–Pt distances of 3.371(1) Å and significant π???π interactions (3.262 Å), complex 2 forms dimers supported only by short Pt???Pt (3.370(1) Å) interactions. In complex 4 the packing is directed by weak bzq???Xyl and bzq???C≡E (C, N) interactions. In solid state at room temperature, compounds 1 and 2 both show a bright red emission (?=42.1 % 1 , 57.6 % 2 ). Luminescence properties in the solid state at 77 K and concentration‐dependent emission studies in CH2Cl2 at 298 K and at 77 K are also reported for 1 , 1·CHCl3 , 2 , 2' , 2·CHCl3 , 3 , 4 .  相似文献   

13.
14.
A new family of conjugates between a Zn(II)-tach complex and (indole)2 or benzofuran-indole amide minor groove binders connected through alkyl or oxyethyl linkers of different lengths has been prepared. The conjugates bind strongly to DNA. However, the complexation to DNA to promote the Zn(II) catalyzed hydrolytic cleavage of the DNA results instead in its inhibition. This inhibition effect has been confirmed also using Cu(II). Modeling studies suggest that in the most stable complex conformation, the minor groove binder and the linker lie in the minor groove hampering the interaction between the metal complex and the phosphate backbone of DNA. Therefore, the linear arrangement of minor groove binder-linker-metal complex appears to be effective to ensure tight binding but unproductive from a hydrolytic point of view.  相似文献   

15.
The ability to amplify DNA along with its unprecedented sequence control has led to its use for different applications, but all are limited by the properties available to natural nucleotides. We previously reported the evolution of polymerase SFM4‐3, which better tolerates 2′‐modified substrates. To explore the utility of SFM4‐3, we now report the characterization of its recognition of substrates with 2′‐azido, 2′‐chloro, 2′‐amino, or arabinose sugars. We find that SFM4‐3 can efficiently synthesize polymers composed of these nucleotides, and most interestingly, that SFM4‐3 can also PCR amplify these modified oligonucleotides. When combined with post‐amplification modification, the latter allows for the exponential amplification of polymers that may be functionalized with desired moieties arrayed in a controlled fashion, the utility of which we demonstrate with extensive small molecule functionalization and the production and initial characterization of a novel DNA hydrogel.  相似文献   

16.
In this study, calix[4]arene derivatives (1114) bearing a single nucleobase (adenine, thymine, cytosine or guanine) were synthesised via click chemistry. The complexation ability of the synthesised derivatives with alkali metal ions was measured using MALDI-TOF mass spectrometry, and their molecular assembly in CDCl3 was determined using 1H NMR. Calix[4]arene derivatives (1114) formed 1:1 complexes with all alkali metal ions and the rank order for the complexation selectivity was Rb+ > Cs+ > K+ ? Na+ > Li+. The attachment of nucleobase at the upper rim of calix[4]arene had little effect on its complexation selectivity for alkali metal ions. Thymine-, adenine- and guanine-calix[4]arenes formed self-assembled structures in CDCl3 via base–base interactions. In addition, adenine-calix[4]arene (11) bound to thymine-calix[4]arene (12) to form a discrete species via Hoogsteen hydrogen bonding.  相似文献   

17.
Quadruplex DNA structures are attracting an enormous interest in many areas of chemistry, ranging from chemical biology, supramolecular chemistry to nanoscience. We have prepared carbohydrate–DNA conjugates containing the oligonucleotide sequences of G‐quadruplexes (thrombin binding aptamer (TBA) and human telomere (TEL)), measured their thermal stability and studied their structure in solution by using NMR and molecular dynamics. The solution structure of a fucose–TBA conjugate shows stacking interactions between the carbohydrate and the DNA G‐tetrad in addition to hydrogen bonding and hydrophobic contacts. We have also shown that attaching carbohydrates at the 5′‐end of a quadruplex telomeric sequence can alter its folding topology. These results suggest the possibility of modulating the folding of the G‐quadruplex by linking carbohydrates and have clear implications in molecular recognition and the design of new G‐quadruplex ligands.  相似文献   

18.
We report the combination of "click chemistry" with PCR by using alkyne-modified triphosphates for efficient and homogeneous labeling of DNA. A series of modified PCR products of different lengths (300, 900, and 2000 base pairs) were prepared by using a variety of alkyne- and azide-containing triphosphates and different polymerases. After intensive screening of real-time PCR methods, protocols were developed that allow the amplification of genes by using these modified triphosphates with similar efficiency to that of standard PCR. The click reaction on the highly modified PCR fragments provided conversion rates above 90 % and resulted in the functionalization of hundreds of alkynes on large DNA fragments with superb selectivity and efficiency.  相似文献   

19.
Two distamycin analogs (PyPyPy‐γ‐Dp and PyPyPyPy‐γ‐Dp) were synthesized by a haloform reaction and the DCC/HOBT coupling reaction in a ample and fast way without amino protection. By using calf thymus DNA, the interaction between the analogs and DNA duplex was studied by CD, and ITC.  相似文献   

20.
A new method for the determination of the relative affinity of a ligand against various dsDNA sequences is presented by using electrospray ionization time‐of‐flight mass spectrometry (ESI‐QTOF) mass spectrometry. The principle is described here through the complexation of double‐stranded DNA by a polyamide ligand including twelve N‐methylpyrrole rings. However this method could be applied to other ligands especially when dissociation constants (Kd) are in nanomolar range. This method does not require knowing the ligand concentration accurately. It allows determination of the relative affinity of a ligand against various dsDNA sequences for 1 : 1 complex stoichiometries in a quick manner without labeling. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号