首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The enthalpy of formation at 298.15 K of the polymer Al13O4(OH)28(H2O)3+8 and an amorphous aluminium trihydroxide gel was studied using an original differential calorimetric method, already developed for adsorption experiments, and aluminium-27 NMR spectroscopy data. ΔHf “Al13” (298.15 K) = ? 602 ± 60.2 kJ mole?1 and ΔHf Al(OH)3 (298.15 K) = ? 51 ± 5 kJ mole?1. Using theoretical values of ΔGR “Al13” and ΔGR Al(OH)3, we calculated ΔGf “Al13” (298.15 K) = ? 13282 kJ mole?1; ΔSf “Al13” (298.15 K) = + 42.2 kJ mole?1; ΔGf Al(OH)3 (298.15 K) = ? 782.5 kJ mole?1; and ΔSf Al(OH)3 (298.15 K) = + 2.4 kJ mole?1.  相似文献   

2.
The dimer-monomer reactions were investigated for the system cis and transo,o'-azodioxytoluene-o-nitrosotoluene in acetonitrile solvent. For the reaction cis dimer-monomer the following thermodynamic and activation parameters have been derived: ΔH°=58.5±2.5 kJ mole?1, ΔS°=206.2±3.8 J mole?1 K?1, ΔH=63.6±3.3 kJ mole?1, ΔS=6.3±0.3 J mole?1 K?1. The corresponding values for the reaction trans dimer-monomer are: ΔH°=45.6±2.1 kJ mole?1, ΔS°=162.7±7.1 J mole?1 K?1, ΔH=80.8±2.9 kj mole?1, ΔS=-13.4±0.8 mole?1 K?1. There is no evidence of a direct cis-trans isomerization (i.e. a reaction not proceeding via the monomer). NMR and various perturbation techniques monitoring the visible absorption of the monomer were employed.  相似文献   

3.
Enthalpies of sublimation for pyrazole and imidazole have been obtained by calorimetry at 298.15K. The ΔH0sub (298.15 K) values for these two compounds are, respectively, 69.16 ± 0.32 and 74.50 ± 0.40 kJ mole?1. From literature data obtained by combustion calorimetry for ΔH0f (c, 298.15 K), the enthalpies of formation of these compounds in the gaseous state (pyrazole: 185.1 ± 2.3 kJ mole?, imidazole: 133.0 ± 1.7 kJ mole?1) have been derived. Several energy values related to the molecular structure of these two compounds (as resonance energy, enthalpy of isomerization, …) have been determined. The study of pyrazole has enabled us to contribute to the evaluation of some characteristics of the NN bond.  相似文献   

4.
The enthalpy of sublimation of benzamide was obtained by calorimetry in the range 323<T (K)<350. From values of ΔHsub(T)=f(T), it was possible to determine ΔH0sub (298.15 K)=101.7±1.0 kJ mole?1. Using previous data on ΔH0f (c, 298.15 K) obtained by combustion calorimetry, the value of ΔH0f (g, 298.15 K)=?100.9±1.2 kJ mole?1 was calculated. With the use of energetical values concerning thioacetamide, thiobenzamide and thiourea, on the one hand, and acetamide, benzamide and urea, on the other, a comparative study was made.  相似文献   

5.
The vapour pressures of cytosine and thymine were measured using the torsion-effusion technique. The sublimation processes of cytosine and thymine were investigated over the temperature ranges 480–553 K and 420–503 K, respectively. The following pressure—temperature equations were derived by least-squares treatment of the vapour pressure data
The standard sublimation enthalpies were obtained by second-and third-law treatment of the experimental data and the values ΔH0298 = 167 ± 10 kJ mole?1 and ΔH0298 = 138 ± 10 kJ mole?1 were derived for cytosine and thymine, respectively. IR and Raman spectra were recorded in the gas phase in order to evaluate the thermodynamic functions of gaseous cytosine and thymine.  相似文献   

6.
The binary system citric acid-water has been investigated with static vapour pressure measurements, adiabatic calorimetry, solution calorimetry, solubility measurements and powder X-ray measurements. The data are correlated by thermodynamics and a large part of the phase diagram is given. Molar heat capacities of citric acid are given from 90 to 330 K and for citric acid monohydrate from 120 to 300 K. The enthalpy of compound formation ΔcomH (298.15 K)=(?11.8±1) kJ mole?1.  相似文献   

7.
A thermochemical study of wulfenite, i.e., natural lead molybdate PbMoO4 (Kyzyl-Espe field deposit, Central Kazakhstan), is performed on a Setaram high-temperature heat-flux Tian-Calvet microcalorimeter (France). Enthalpies of the formation of wulfenite from oxides Δf H ox o (298.15 K) = ?88.5 ± 4.3 kJ/mol and simple substances Δf H°(298.15 K) = ?1051.2 ± 4.3 kJ/mol were determined by means of melt calorimetry. The Δf G°(298.15 K) of wulfenite corresponding to ?949.1 ± 4.3 kJ/mol was calculated using data obtained earlier for S°(298.15 K) = 161.5 ± 0.27 J/(K mol).  相似文献   

8.
Calorimetric measurements at 25°C were made to determine the thermodynamic quantities for the intercalation of pyridine with α- and γ-zirconium phosphates. These phosphates showed exothermic reactions with ΔH0 = ?59.3 and ?21.9 kJ mole?1, respectively. The large difference between the depyridination temperatures for both intercalates is rediscussed with the aid of the ΔG0 data obtained.  相似文献   

9.
Knudsen effusion studies of the sublimation of polycrystalline SnS, prepared by annealing and chemical vapor transport, have been performed employing vacuum micro-balance techniques in the temperature range 733–944 K and at pressures ranging from about 6 × 10?3 to 11 Pa.The third-law heats of sublimation and second-law entropy of reaction SnS(s) = SnS(g) were determined to be ΔH0298 = 220.4 ± 3.0 kJ mole? and ΔS0298 = 162.4 ± 4.5 J K?1 mole?1. From these data the standard heat of formation and absolute entropy of SnS(s) were calculated to be ?102.9 ± 4.0 kJ mole?1 and 79.9 ± 6.0 J K?1, respectively.  相似文献   

10.
The heat of dissolution of potassium chlorate in water at 298.15 K has been measured on an LKB 8700-1 calorimeter in the concentration range 0.063–0.659 m. The concentration dependence of the measured data was fitted by an empirical equation ΔHm (kJ mole?1) = 41.3538 + 1.8626m12 ? 6.4300m which was derived from our and Andauer—Lange data. The heat of crystallization calculated from this dependence was ΔHcryst. = 34.7 ± 0.5 kJ mole?1, which agrees with data calculated for potassium chlorate from solubility and activity data.  相似文献   

11.
Isopiestic vapor-pressure measurements were made for Li2SO4(aq) from 0.1069 to 2.8190 mol?kg?1 at 298.15 K, and from 0.1148 to 2.7969 mol?kg?1 at 323.15 K, with NaCl(aq) as the reference standard. Published thermodynamic data for this system were reviewed, recalculated for consistency, and critically assessed. The present results and the more reliable published results were used to evaluate the parameters of an extended version of Pitzer’s ion-interaction model with an ionic-strength dependent third-virial coefficient, as well as those of the standard Pitzer model, for the osmotic and activity coefficients at both temperatures. Published enthalpies of dilution at 298.15 K were also analyzed to yield the parameters of the ion-interaction models for the relative apparent molar enthalpies of dilution. The resulting models at 298.15 K are valid to the saturated solution molality of the thermodynamically stable phase Li2SO4?H2O(cr). Solubilities of Li2SO4?H2O(cr) at 298.15 K were assessed and the selected value of m(sat.)=3.13±0.04 mol?kg?1 was used to evaluate the thermodynamic solubility product K s(Li2SO4?H2O, cr, 298.15 K) = (2.62±0.19) and a CODATA-compatible standard molar Gibbs energy of formation Δf G m o (Li2SO4?H2O, cr, 298.15 K) = ?(1564.6±0.5) kJ?mol?1.  相似文献   

12.
Thermal and thermochemical investigations of natural hydroxyl-bearing copper sulfate Cu3SO4(OH)4??antlerite have been carried out. The stages of its thermal decomposition have been studied employing the Fourier-transform IR spectroscopy. The enthalpy of formation of antlerite from the elements ??f H m o (298.15?K)?=?(?1750?±?10)?kJ?mol?1 has been determined by the method of oxide melt solution calorimetry. Using value of S m o (298.15?K), equal to (263.46?±?0.47)?J?K?1?mol?1, obtained earlier by the method of adiabatic calorimetry, the Gibbs energy value of ??f G m o (298.15?K)?=?(?1467?±?10)?kJ?mol?1 has been calculated.  相似文献   

13.
In an effort to probe the reaction of antibiotic hydrolysis catalyzed by B3 metallo-??-lactamase (M??L), the thermodynamic parameters of penicillin G hydrolysis catalyzed by M??L L1 from Stenotrophomonas maltophilia were determined by microcalorimetric method. The values of activation free energy ??G ?? ?? are 88.26, 89.44, 90.49, and 91.57?kJ?mol?1 at 293.15, 298.15, 303.15, and 308.15?K, respectively, activation enthalpy ??H ?? ?? is 24.02?kJ?mol?1, activation entropy ??S ?? ?? is ?219.2511?J?mol?1?K?1, apparent activation energy E is 26.5183?kJ?mol?1, and the reaction order is 1.0. The thermodynamic parameters reveal that the penicillin G hydrolysis catalyzed by M??L L1 is an exothermic and spontaneous reaction.  相似文献   

14.
The vaporization of praseodymium triiodide was studied by high-temperature mass spectrometry. Monomeric (PrI3) and dimeric (Pr2I6) molecules and the PrI 4 ? and Pr2I 7 ? negative ions were recorded in saturated vapor over the temperature range 842–1048 K. The partial pressures of neutral vapor components were determined. The enthalpies of sublimation Δs H o(298.15 K) in the form of monomers (291 ± 10 kJ/mol) and dimers (400 ± 30 kJ/mol) were calculated by the second and third laws of thermodynamics. The equilibrium constants of ion-molecular reactions were measured and the enthalpies of the reactions determined. The enthalpies of formation Δf H o(298.15 K) of molecules and ions in the gas phase were calculated (?373 ± 11, ?929 ± 31, ?865 ± 25, and ?1433 ± 48 kJ/mol for PrI3, Pr2I6, PrI 4 ? , and Pr2I 7 ? , respectively).  相似文献   

15.
The enthalpies of reactions 1 and 2 have been measured as ΔH(1) = ?142 ± 6 and ΔH(2) = ?112 ± 6 kJ mol?1 to determine whether thermochemical factors are a major influence in the formation of different reaction products (tcne = tetracyanoethylene).
  相似文献   

16.
The kinetics of pentoxyl (I) oxidation in aqueous media under the action of hypochlorite ions was studied at pH 8.8 and 273–298 K. The order of the reaction with respect to both participants was found to be one. The temperature dependence of the reaction rate obeyed the Arrhenius law. The reaction activation parameters were found to be E a=11.08 kJ/mol, ΔH =8.73 kJ/mol, ΔS =?200.70 J/(mol K), and ΔG =66.88 kJ/mol. Reaction stoichiometry was studied, the chemical characteristics of the process considered, and a mechanism of the oxidative transformation of I under the action of OCl? suggested.  相似文献   

17.
Stability constants and heat effects of the formation reactions of magnesium and calcium trimethylenediaminetetraacetates at 298.15 K and ionic strength of 0.1, 0.5, and 1.0 (mol/L KNO3) have been determined by means of potentiometry and calorimetry. Standard thermodynamic parameters (log K0, ΔrG0, ΔrH0, and ΔrS0) of the studied equilibriums have been determined.  相似文献   

18.
The reaction between chromium(VI) and L-ascorbic acid has been studied by spectrophotometry in the presence of aqueous citrate buffers in the pH range 5.69–7.21. The reaction is slowed down by an increase of the ionic strength. At constant ionic strength, manganese(II) ion does not exert any appreciable inhibition effect on the reaction rate. The rate law found is where Kp is the equilibrium constant for protonation of chromate ion and kr is the rate constant for the redox reaction between the active forms of the oxidant (hydrogenchromate ion) and the reductant (L-hydrogenascorbate ion). The activation parameters associated with rate constant kr are Ea = 20.4 ± 0.9 kJ mol?1, ΔH = 17.9 ± 0.9 kJ mol?1, and ΔS=?152 ± 3 J K?1 mol?1. The reaction thermodynamic magnitudes associated with equilibrium constant Kp are ΔH0 = 16.5 ± 1.1 kJ mol?1 and ΔS0 = 167 ± 4 J K?1 mol?1. A mechanism in accordance with the experimental data is proposed for the reaction. © 1993 John Wiley & Sons, Inc.  相似文献   

19.
The thermodynamics of the conversion of aqueous glucose to fructose has been investigated using both heat conduction microcalorimetry and high pressure liquid chromatography (HPLC). The reaction was carried out in both aqueous TRIS/HCl buffer and in aqueous phosphate buffer in the pH range 7 to 8 using the enzyme glucose isomerase and the cofactors CoCl2 and MgSO4. The temperature range over which this reaction was investigated was 298.15 to 358.15 K (25–85°C). We have found that the enthalpy of reaction is independent of pH over the range 7 to 8. A combined analysis of both the HPLC and microcalorimetric data leads to the following results at 25°C: ΔGo=349±53 J-mol?1, ΔHo=2780±200 J-mol?1, and ΔC p o =76±30 J-mol?1-K?1. The stated uncertainties are based upon an analysis of both the random and systematic errors inherent in the measurements. The temperature dependence of the equilibrium constant K for the process is expressed as $$RinK = - \frac{{349}}{{298.15}} + 2780(\frac{1}{{298.15}} - \frac{1}{T}) + 76(\frac{{298.15}}{T} - 1 + \ln \frac{T}{{298.15}})$$ Comparisons are made with literature data.  相似文献   

20.
The thermodynamic characteristics of complexation between ethylenediamine-N,N'-disuccinic acid (H4Y; EDDA) and Ho3+ ion were determined calorimetrically and potentiometrically at 298.15 K and ionic strengths of 0.1, 0.5, 1.0, and 1.5 (KNO3). The logK, ΔrG, ΔrH, and ΔrS values for the formation of HoY and HOHY complexes were calculated at the studied and zero ionic strength values. The changes in thermodynamic parameters of the reactions are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号