首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Single crystal X-ray diffraction photographs taken with a Buerger precession camera, at temperatures 250, 214, and 122 K, corroborate the existence of three low-temperature phases of Ag26I18W4O16. These phases are labeled α′, β, and γ in order of decreasing temperature. The α′ phase is monoclinic, space group P21, Z = 2; the β phase is triclinic, space group P1 or P1, Z = 2; and the γ phase is triclinic, space group P1, Z = 1. Lattice constants at the aforementioned temperatures are given. Twins in the β and γ phases are related by the albite and pericline laws, as are twins in the feldspars. The highest symmetry known to be attained by the (W4O16)8? entity is 2(C2), which, strictly, it must lose at the transition to the α′ phase.  相似文献   

2.
We have synthesized several pseudoternary layered compounds by cation or anion cross substitution in ternary AB2X4 compounds. Here we report on the low frequency Raman spectra obtained from ZnxCd1-xIn2S4, Zn(InxGa1-x)2S4 and ZnIn2(SxSe1-x)4 single crystals. Within these systems we have identified five compositionally or dynamically different phases. Each of these phases may be characterized by its peculiar low frequency Raman spectrum which is connected to the dynamics of the layers in the unit cell. Abrupt structural/dynamical changes are observed as a function of composition between different phases. Within each phase compositional changes cause only smooth and small spectral variations.  相似文献   

3.
Results of electrical conductivity measurements, thermal analysis, and X-ray diffraction studies indicate the existence of four phases, between 295 K and the melting points, in the system (Cs1?yRby)Cu4Cl3I2. These phases are designated α, á β, γ in order of decreasing temperature. The α phase is isostructural with α-RbAg4I5; the á phase is also cubic and very likely belongs to space groupP213, a subgroup ofP4132 andP4332 to which the α phase belongs. There is a high probability that the á → α transition is continuous. The á → α transition is not discernible in the conductivity measurements or thermal analysis; therefore the line of á-α transitions is presently unknown. The β phase transforms to the á and the γ phase transforms to the β phase wheny ≤ 0.36; the γ phase transforms to the α phase wheny ≥ 0.36. That is, there is a triple point aty = 0.36, T = 399K. The γ-β, β-α′, and γ-α transitions are all hysteretic and are therefore first order. The conductivities of the β phases are relatively low and the enthalpies of activation relatively high. The conductivity of the β phase decreases with increasingy. The β phase probably belongs to space groupR3, in which the Cu+ ions can be ordered. The α and á phases are the true solid electrolytes; the conductivities are high, >0.73 Ω?1cm?1 at 419 K, and the enthalpies of activation of motion of the Cu+ ions low, 0.11 eV.In the system CsCu4Cl3(I2?xClx), 0 ≤ x ≤ 0.25, the Cl? for I? substitutions affect the transitions to only a small extent relative to the stoichiometric compound. The β phase occurs for allx and transforms to á.  相似文献   

4.
The crystal chemistry of Li3PO4, Li3VO4 and Li3AsO4 are compared. All three have an isostructural low phase, designated βII, and an isostructural high phase, γII, but in Li3VO4 and Li3AsO4 the high-low transformation proceeds reversibly through one or more transitional phases some of which can be quenched to ambient. The crystal chemistry of derivative Li3PO4 phases, including Li2MgSiO4, Li2ZnSiO4, Li2CoSiO4, Li2MgGeO4 and Li2ZnGeO4 is compared and the occurrence of high, low, and of distorted high and low phases is correlated with the temperature of preparation and rate of cooling. The derivative Li3PO4 phases show extensive or complete mutual solubility not only with each other, but with Li3PO4, with M2XO4 compounds (M = Zn2+, Mg2+; X = Ge4+, Si4+) and also with Li4XO4 compounds (X = Ge4+, Si4+). The sequence of phase transformations encountered on heating or cooling is quite sensitive to the stoichiometry of the derivative phases.  相似文献   

5.
The unit-cell parameters of SnF2 were measured from ?200 to 190°C. The tensor of thermal expansion of the three phases (α, β, and γ) was computed from the expansion in each (hkl) direction by a least-squares method. The thermal expansion of each phase is related to its crystal structure and physical properties (molecular structure of α-SnF2, ferroelastic properties of the β-phase).  相似文献   

6.
The structures of the low-and high-temperature modifications of lithium orthotantalate, Li3TaO4, have been determined by neutron and X-ray diffraction methods. The low-temperature, or β, phase has symmetry C2c and lattice parameters a1 = 8.500(3), b1 = 8.500(3), c1 = 9.344(3)Å, and β = 117.05(2)°. The high-temperature, or α, phase has symmetry P2 and lattice parameters ah = 6.018(1), bh = 5.995(1), ch = 12.865(2)Å, and βh = 103.53(2)°. Both structures are ordered. The β-phase has a rock salt-type structure with a 3 : 1 ordering of the Li+ and Ta5+ ions. Its structure can be generated from the low-temperature modification by means of a complex pattern of shifts of the Ta5+ ions.  相似文献   

7.
The subsolidus phase diagram, CaO-Al2O3-CoO, and its phase relations below 1300°C have been studied in air. The stability regions of nine subsolidus compatibility triangles were established and a new ternary phase was found. The structure of this compound, Ca3CoAl4O10 (orthorhombic, space group Pbc21, a=5.1452(2) Å, b=16.7731(5) Å, c=10.7055(3) Å), was determined from X-ray diffraction data and found to be isostructural with Ca3ZnAl4O10. This is an open framework compound with three crystallographically different channels, each with a diameter of ∼3.5 Å. The two end members of the binary CoO-CaO system are surrounded by small regions of solid solutions. Lab color parameters were measured in several compositions. No ternary phases were found when Co was substituted by other divalent cations such as Sr, Ba, Mn, Ni, Cu, Cd, Sn and Pb.  相似文献   

8.
The x, T-phase diagram of the binary system Na2WO4Na2MoO4 has been redetermined at ambient pressure, taking into account the influence of hysteresis effects. Thermodynamic calculations, based upon transition entropies as determined by precision DSC (differential scanning calorimetry), indicate that the system is almost ideal with respect to the high-temperature phases.As anion dopes, Na2SO4 and Na2CrO4 give a metastable extension of the β-phase of Na2WO4 at decreasing temperature, involving some 40°C at 0.01 mole fraction of dopant. Cation dopes like Li2WO4 and K2WO4 behave quite differently.The electrical conductivity through the phase diagram is high in the α-phase (σ ~ 10?2 mho cm?1) almost regardless of composition. The anomalous high conductivity of the β-phase decreases with increasing molybdate content. In pure Na2MoO4 an anomaly occurs at the α-α2 transition, resembling the behavior of Na2WO4 at the β-α transition. The (highest) α2-phase is hexagonal, (P63mmc, showing large anisotropic thermal vibrations. The α-phase is orthorhombic (Fddd) as is the β-phase (probably Pbn21).  相似文献   

9.
The crystal structure of β-Ba9Fe4S15 shows that it is a phase in the infinitely adaptive series of compounds Ba3Fe1+xS5, 0 ? x ? 1. The material is synthesized by reacting a slightly sulfur-rich mixture at 900°C in a sealed quartz ampoule. Lattice constants are a = 25.212(3), Å, b = 9.594(1), Å, c = 12.575(1), Å, Pnma, z = 4. Three thousand thirty-three structure amplitudes were refined to R = 0.049. BaS6 trigonal prisms share triangular faces to form infinite columns; the columns in turn share edges and create nearly hexagonal enclosures. Within these rings are additional Ba and S and tetrahedral interstices are created which can be occupied by Fe. The variation of the Fe occupancy from ring to ring gives rise to phases in which one dimension is an integral multiple of the 8.5-Å repeat observed in one end member of the series, Ba3FeS5. The other end member is Ba3Fe2S5. At temperatures below 900°C a polymorphic phase is formed. Its lattice constants are a = b = 9.634(1), Å, c = 34.311(3)Å, I41a, z = 4. One thousand five hundred eighty-three structure amplitudes were refined to R = 0.0483. Trigonal prisms and bisdisphenoids articulate to form a complex three-dimensional structure. Two of the S atoms in the structure have statistical site occupancies.  相似文献   

10.
The phase relations of the system Cr2O3TiO2 were determined at temperatures between 1400 and 1765°C in air. Discrete homologous series of Cr2Tin?2O2n?1, with n = 6, 7, 8, were found to be stable as single phases in the range of certain temperatures, while a continuous solid solution existed in the composition of n > 8 below 1425°C. This presence and its stable region of a new compound of Cr2TiO5 corresponding to n = 3 are revealed in the present paper. Cr2Ti2O7, the so-called E phase, existed in wide homogeneity range, corresponding to the composition of approximately 3 < n < 5. High-temperature phases (called n and n′ phases in the present work) existed above 1425°C and seemed to be closely related to each other from the viewpoint of the structure except that some X-ray diffraction lines of n phase were strongly diffused. Both rutile and chromia had limited solid solubilities. In the present paper, phase relations between Cr2O3 and TiO2 are summarized in a phase diagram.  相似文献   

11.
[Ni(ND3)6](ClO4)2 has three solid phases between 100 and 300 K. The phase transitions temperatures at heating (TC1h=164.1 K and TC2h=145.1 K) are shifted, as compared to the non-deuterated compound, towards the lower temperature of ca. 8 and 5 K, respectively. The ClO4 anions perform fast, picosecond, isotropic reorientation with the activation energy of 6.6 kJ mol−1, which abruptly slow down at TC1c phase transition, during sample cooling. The ND3 ligands perform fast uniaxial reorientation around the Ni-N bond in all three detected phases, with the effective activation energy of 2.9 kJ mol−1. The reorientational motion of ND3 is only slightly distorted at the TC1 phase transition due to the dynamical orientational order-disorder process of anions. The low value of the activation energy for the ND3 reorientation suggests that this reorientation undergoes the translation-rotation coupling, which makes the barrier to the rotation of the ammonia ligands not constant but fluctuating. The phase polymorphism and the dynamics of the molecular reorientations of the title compound are similar but not quite identical with these of the [Ni(NH3)6](ClO4)2.  相似文献   

12.
Phase relations and microstructures in the TiO2-rich part of the TiO2Ga2O3 pseudobinary system have been determined at temperatures between 1373 and 1623°K using X-ray diffraction and electron and optical microscopy. The phases occurring in the system are TiO2 (rutile), β-Ga2O3, a series of oxides Ga4Tim?4O2m?2 (m odd) which exist above 1463°K, and Ga2TiO5, which exists above 1598°K. The width of the phase region occupied by the Ga4Tim?4O2m?2 phases varies with temperature. At 1473°K it is narrow, and has limits of Ga4Ti25O56 to Ga4Ti21O48 while at higher temperatures it broadens to limits of from Ga4Ti27O60 to Ga4Ti11O28 at 1623°K. These phases are often disordered and crystals frequently contain partially ordered intergrowths of oxides with various values of m. On the TiO2-rich side of the phase region there is a continuous change in texture from rutile to the end members of the Ga4Tim?4O2m?2 structures. The findings are summarized on a phase diagram.  相似文献   

13.
Phase relations in the system NiAl2O4Ni2SiO4 were studied in the pressure range 1.5 ~ 13.0 GPa and in the temperature range 800 ~ 1450°C. Two new phases, IV and V, were found in regions of pressure higher than 4 GPa. Phase V disproportionates into a mixture of Ni2SiO4-spinel, NiO, and Al2O3 at approximately 9.5 GPa and 1100°C. Phases III, IV, and V form a solid solution in some compositional range: phases IV and V have a composition around NiAl2O4·Ni2SiO4, whereas phase III spreads from NiAl2O4·Ni2SiO4 to the NiAl2O4-rich side. All the phases I ~ V are structurally considered to be spinel derivatives, “spinelloids,” with three kinds of tetrahedral groups; isolated tetrahedra TO4, linked ones T2O7, and triply linked ones T3O10. The ratios of isolated tetrahedra to linked ones are large in the higher-pressure phases and small in the lower-pressure phases. The difference of compositional range of phase III from that of phases IV and V is possibly explained by the avoidance of linked tetrahedra such as O3AlOAlO3.  相似文献   

14.
Phases and structural phase transitions of the compounds (CH3NH3)2MnCl4, (C2H5NH3)2MnCl4 and (C3H7NH3)2MnCl4 have been studied by means of thermoanalytical methods (DSC) and X-ray single crystal and powder diffraction data in the temperature range of 85–480°K at normal pressure. All phases show perovskite-like layer structures. The high temperature phases (α phase) correspond to the K2NiF4 type and may be regarded as the aristotype of each polymorphic compound. All transitions are reversible. Transition patterns are:
Based on the DSC peak-shape analysis and diffraction data a model of a tilting system of the MnCl6-octahedra layer is introduced in order to understand essential features of structures of different phases and their transition behavior. Single crystal film data of (C3H7NH3)2MnCl4 phases reveal some disorder phenomena. The ε phase exhibits a superstructure along [010] with a triplication of the shortest axis corresponding to the δ phase. The γ phase of this compound shows strong satellite reflections, due to a transverse distortion wave along the [100] lattice direction.  相似文献   

15.
We described herein a facile solution-phase route to three nanocrystals of antimony oxychlorides and oxides (Sb4O5Cl2, Sb8O11Cl2, and Sb2O3), whose morphologies and phases were varied with the pH value of a reaction mixture or composition of a mixed solvent. In particular, the solvent composition controlled the selective preparation of cubic Sb2O3 (senarmontite) and orthorhombic Sb2O3 (valentinite). Both cubic and orthorhombic Sb2O3 samples exhibited strong emission properties.  相似文献   

16.
17.
18.
The structure of the TiVH system is studied by X-ray diffraction and 1H and 51V NMR measurements. It is shown that the solid solution of TiV is separated into a few phases by hydrogenation. They are α-TiVH, β-TiVH, γ-TiVH, and γ-TiH phases, which are assumed to have their origins either in TiHx or in VHx. The concentration of each phase can be estimated by NMR, which is dependent on the composition of the system. The phase separation caused by hydrogenation is due to the large stability of the γ-TiH phase.  相似文献   

19.
Methods of (19F, 1H) NMR and impedance spectroscopy are used to investigate the internal mobility and ionic conduction in solid solutions arising in the system PbF2-ZrF4 and polycrystals KSnZrF7, Li(Na)(NH4)6Zr4F23, and M2ZrF6 (M = K, NH4). Factors responsible for the form of ionic motions and their energetics at 170–550 K are considered. It is established that the phase transitions in these compounds are connected with the crystal transition to a superionic state and that the high ionic (superionic) conductivity of beta phases is due to the diffusion of fluoride ions, ammonium cations, and possibly alkali metal cations. The obtained data testify to a substantial role of chainlike aggregation of anionic groupings and a variableness of structural mechanisms of formation of such chains in fluorozirconates for the development of translational diffusion in these compounds.__________Translated from Elektrokhimiya, Vol. 41, No. 5, 2005, pp. 573–582.Original Russian Text Copyright © 2005 by Kavun, Uvarov, Slobodyuk, Goncharuk, Kotenkov, Tkachenko, Gerasimenko, Sergienko.  相似文献   

20.
Films of Y2O3, La2O3, and La2CuO4 were prepared by an ultrasonic nebulization and pyrolysis method using acetylacetonates of the corresponding metals in alcohol solvents as source materials. Homogeneous, uniform films with good adherence have been obtained using this simple technique. As-deposited yttrium and lanthanum oxide films were poorly crystallized. After postannealing in oxygen at higher temperature, they crystallized into cubic and hexagonal phases, respectively. Transparent yttrium and lanthanum oxide films have high electric breakdown voltages. Single phase polycrystalline La2CuO4 thin films were obtained from a source solution with a La:Cu ratio of 2:1.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号