首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In pulse radiolysis investigations the hydroxyl radical formed in water radiolysis reacts with 2,6-dichloroaniline in radical addition to the ring forming hydroxy-cyclohexadienyl radical and also in hydrogen atom abstraction from the amino group resulting in anilino radical. The hydroxy-cyclohexadienyl radical in the absence of dissolved O2 partly transforms to anilino radical, when dissolved oxygen is present the radical transforms to peroxy radical. According to chemical oxygen demand measurements the reaction of one OH radical induces the incorporation of 0.6 O2 into the products. It is a typical value for chlorine atom substituted aromatic molecules, and smaller than found for molecules without chlorine atom (1.0–2.0).  相似文献   

2.
Horner JH  Lal M  Newcomb M 《Organic letters》2006,8(24):5497-5500
The kinetics of radical heterolysis reactions, including rate constants for radical cation-anion contact ion pair formation, collapse of the contact pair back to the parent radical, and separation of the contact pair to a solvent-separated ion pair or free ions were obtained in several solvents for a beta-mesyloxy radical. Rate constants were determined from indirect kinetic studies using thiophenol as both a radical trapping agent via H-atom transfer and an alkene radical cation trapping agent via electron transfer. [reaction: see text].  相似文献   

3.
The rearrangement of a substituted cyclohexyl radical to a cyclopentylmethyl radical on the skeleton of avermectin B1 has been investigated using density functional (UB3LYP/6-31G(d)) and G3MP2B3 computational methods. The rearrangement is preferred when highly radical stabilizing groups are present at the 2- and 3-positions of the cyclohexyl radical. A substituent on the 3-position of the cyclohexyl radical enables ring-cleavage of the cyclohexyl radical, while a radical stabilizing substituent on the 2-position of the cyclohexyl radical stabilizes the final cyclopentylmethyl radical, enabling the overall rearrangement and reversing the normal thermodynamic preference for the hexenyl radical ring closure.  相似文献   

4.
Two series of enol ether radical cations were studied by laser flash photolysis methods. The radical cations were produced by heterolyses of the phosphate groups from the corresponding alpha-methoxy-beta-diethylphosphatoxy or beta-diphenylphosphatoxy radicals that were produced by 355 nm photolysis of N-hydroxypryidine-2-thione (PTOC) ester radical precursors. Syntheses of the radical precursors are described. Cyclizations of enol ether radical cations 1 gave distonic radical cations containing the diphenylalkyl radical, whereas cyclizations of enol ether radical cations 2 gave distonic radical cation products containing a diphenylcyclopropylcarbinyl radical moiety that rapidly ring-opened to a diphenylalkyl radical product. For 5-exo cyclizations, the heterolysis reactions were rate limiting, whereas for 6-exo and 7-exo cyclizations, the heterolyses were fast and the cyclizations were rate limiting. Rate constants were measured in acetonitrile and in acetonitrile solutions containing 2,2,2-trifluoroethanol, and several Arrhenius functions were determined. The heterolysis reactions showed a strong solvent polarity effect, whereas the cyclization reactions that gave distonic radical cation products did not. Recombination reactions or deprotonations of the radical cation within the first-formed ion pair compete with diffusive escape of the ions, and the yields of distonic radical cation products were a function of solvent polarity and increased in more polar solvent mixtures. The 5-exo cyclizations were fast enough to compete efficiently with other reactions within the ion pair (k approximately 2 x 10(9) s(-1) at 20 degrees C). The 6-exo cyclization reactions of the enol ether radical cations are 100 times faster (radical cations 1) and 10 000 times faster (radical cations 2) than cyclizations of the corresponding radicals (k approximately 4 x 10(7) s(-1) at 20 degrees C). Second-order rate constants were determined for reactions of one enol ether radical cation with water and with methanol; the rate constants at ambient temperature are 1.1 x 10(6) and 1.4 x 10(6) M(-1) s(-1), respectively.  相似文献   

5.
Polypropylene (PP) and polyethylene (PE) peroxy radicals undergo photoreactions, but under commonly encountered photodegradation conditions these reaction rates are much lower than those of conventional radical reactions; for example, for PP peroxy radicals in noon summer sunlight at 25°C their rate of photolysis to alkyl radicals is less than one-tenth of their rate of hydrogen abstraction from the polymer. At lower temperatures( < ?10°C) or when more intense radiation is used, however, peroxy radical photolysis becomes a proportionately more important source of alkyl radicals. In addition, occurrence of photoinduced radical combination is confirmed but is shown to be important only when photolysis generates an alkyl radical sufficiently close to a peroxy radical that termination can occur before oxygen reconverts the alkyl radical to a peroxy radical. This termination mechanism therefore becomes more important for radicals generated at lower temperatures when the average separation of a radical pair is lower.  相似文献   

6.
95 percent of the reaction of t-butoxy radical with norbornadiene occurs by radical addition followed by rearrangement to nortricyclyl and 7-t-butoxynorbornenyl products; the remainder includes a novel radical rearrangement involving a 1,3-H shift and some radical abstraction observed for the first time.  相似文献   

7.
The reactions of hydrated electron (eaq-) with various radicals have been studied in pulse radiolysis experiments. These radicals are hydroxyl radical (*OH), sulfite radical anion (*SO3-), carbonate radical anion (CO3*-), carbon dioxide radical anion (*CO2-), azidyl radical (*N3), dibromine radical anion (Br2*-), diiodine radical anion (I2*-), 2-hydroxy-2-propyl radical (*C(CH3)2OH), 2-hydroxy-2-methyl-1-propyl radical ((*CH2)(CH3)2COH), hydroxycyclohexadienyl radical (*C6H6OH), phenoxyl radical (C6H5O*), p-methylphenoxyl radical (p-(H3C)C6H4O*), p-benzosemiquinone radical anion (p-OC6H4O*-), and phenylthiyl radical (C6H5S*). The kinetics of eaq- was followed in the presence of the counter radicals in transient optical absorption measurements. The rate constants of the eaq- reactions with radicals have been determined over a temperature range of 5-75 degrees C from the kinetic analysis of systems of multiple second-order reactions. The observed high rate constants for all the eaq- + radical reactions have been analyzed with the Smoluchowski equation. This analysis suggests that many of the eaq- + radical reactions are diffusion-controlled with a spin factor of 1/4, while other reactions with *OH, *N3, Br2*-, I2*-, and C6H5S* have spin factors significantly larger than 1/4. Spin dynamics for the eaq-/radical pairs is discussed to explain the different spin factors. The reactions with *OH, *N3, Br2*-, and I2*- have also been found to have apparent activation energies less than that for diffusion control, and it is suggested that the spin factors for these reactions decrease with increasing temperature. Such a decrease in spin factor may reflect a changing competition between spin relaxation/conversion and diffusive escape from the radical pairs.  相似文献   

8.
Laser flash photolysis of 1-bromo-1-(4-methoxyphenyl)acetone in acetonitrile leads to the formation of the alpha-acyl 4-methoxybenzyl radical that under acidic conditions rapidly protonates to give detectable amounts of the radical cation of the enol of 4-methoxyphenylacetone. This enol radical cation is relatively long-lived in acidic acetonitrile (tau approximately equal to 200 micros), which is on the same order of magnitude as the radical cations of other 4-methoxystyrene derivatives. Rate constants for deprotonation of the radical cation and the acid dissociation constant for the enol radical cation were also determined using time-resolved absorption spectroscopy. Deprotonation is rapid, taking place with a rate constant of 3.9 x 10(6) s(-1), but the enol radical cation is found to be only moderately acidic in acetonitrile having a pK(a) = 3.2. The lifetime of the enol radical cation was also found to be sensitive to the presence of oxygen and chloride. The sensitivity toward oxygen is explained by oxygen trapping the vinyloxy radical component of the enol radical cation/vinyloxy equilibrium, while chloride acts as a nucleophile to trap the enol radical cation.  相似文献   

9.
Analytical solution is obtained for time-resolved magnetic field effects (TR-MFE) on recombination fluorescence of radical-ion pair (RIP) containing radical ion with two groups of magnetically equivalent nuclei. The present theoretical approach is applied to three experimental systems: RIPs containing radical cations of 2,3-dimethylbutane, 2,2,6,6-tetramethylpiperidine, or diisopropylamine and radical anion of p-terphenyl-d14 in nonpolar alkane solutions. Good agreement between theory and experiment is found for all the three systems, hyperfine coupling constants of radical cations are obtained by fitting the experimental TR-MFE traces. The potential of the TR-MFE technique for studying radical ions with nonequivalent nuclei is discussed in detail. The wide applicability of the theoretical model and the experimental technique make them useful for studying short-lived radical species that are often beyond the reach of the conventional electron paramagnetic resonance spectroscopy.  相似文献   

10.
《Tetrahedron》1986,42(22):6207-6217
The photochemical reactions of a number of cyanoaromatic (acceptor) and methylaromatic (donor) molecules have been investigated. These reactions can result in the formation of photosubstitution products or benzyl radical coupling products. A survey of our results and previously published data indicates that exergonic photostimulated electron transfer is a necessary but not sufficient condition for the observation of reaction products. The efficiency of proton transfer from the donor cation radical to the acceptor anion radical is determined by the kinetic acidity and basicity of the radical ion pair. Mechanistic evidence is presented which indicates that proton transfer requires diffusion apart and reencounter of the initially formed radical ion pair. Predominant radical pair combination is observed for anion radicals which yield electron-deficient free radicals upon protonation, whereas predominant cage escape and benzyl radical coupling is observed for anion radicals which yield electron-rich free radicals upon protonation.  相似文献   

11.
The interaction of the nitroxide radical traps (Tempo and Dmpo) and radicals produced in the electrophilic fluorination of olefins (styrene and alpha-methylstyrene) and Selectfluor (1-chloromethyl-4-fluoro-1,4-diazoniabicyclo[2.2.2]octanebis(tetrafluoroborate) (F-TEDA-BF(4)) (1)) was investigated by electrospray ionization mass spectrometry (ESI-MS). Tempo succeeded in intercepting the radical cationic intermediates and the radical adduct ions were detected at m/z 260 (for styrene) and m/z 274 (for alpha-methylstyrene). Dmpo could also intercept the fluorine radical and radical adduct ions were detected at m/z 131, 132 and 152. The interception of the radical cationic intermediates and fluorine radical is good evidence for the presence of a single-electron transfer mechanism in the electrophilic fluorination.  相似文献   

12.
To further test the hypothesis that electron capture dissociation (ECD) involves long-lived radical intermediates and radical migration occurs within these intermediates before fragmentation, radical trap moieties were attached to peptides with the assumption that they would reduce fragmentation by decreasing the mobility of the radical. Coumarin labels were chosen for the radical traps, and unlabeled, singly-labeled, and doubly-labeled Substance P were analyzed by ECD. The results demonstrated a correlation between the number and position of tags on the peptide and the intensity of side-chain cleavages observed, as well as an inverse correlation between the number of tags on the peptide and the intensity of backbone cleavages. Addition of radical traps to the peptide inhibits backbone cleavages, suggesting that either radical mobility is required for these cleavages, or new noncovalent interactions prevent separation of backbone cleavage fragments. The enhancement of side-chain cleavages and the observation of new side-chain cleavages associated with aromatic groups suggest that the gas-phase conformation of this peptide is substantially distorted from untagged Substance P and involves previously unobserved interactions between the coumarin tags and the phenylalanine residues. Furthermore, the use of a double resonance (DR)-ECD experiment showed that these side-chain losses are all products of long-lived radical intermediate species, which suggests that steric hindrance prevents the coumarin-localized radical from interacting with the backbone while simultaneously increasing the radical rearrangements with the side chains.  相似文献   

13.
2'-azido-2'-deoxyribonucleoside 5'-diphosphates are mechanism-based inhibitors of Ribonucleotide Reductase. Considerable effort has been made to elucidate their mechanism of inhibition, which is still controversial and not fully understood. Previous studies have detected the formation of a radical intermediate when the inhibitors interact with the enzyme, and several authors have proposed possible structures for this radical. We have conducted a theoretical study of the possible reactions involved, which allowed us to identify the structure of the new radical among the several proposals. A new reactional path is also proposed that is the most kinetically favored to yield this radical and ultimately inactivate the enzyme. The energetic involved in this mechanism, both for radical formation and radical decay, as well as the calculated Hyperfine Coupling Constants for the radical intermediate, are in agreement with the correspondent experimental values. This mechanistic alternative is fully coherent with remaining experimental data.  相似文献   

14.
The photochemistry of ninhydrin in benzene and water was studied by laser flash photolysis and electron paramagnetic resonance. Its photochemistry was shown to be dependent on the solvent. In benzene, a triplet excited state was observed, which underwent hydrogen abstraction reactions or reduction to the radical anion. In water, the radical anion of ninhydrin was formed within the laser pulse (15 ns) at neutral pH, whereas the neutral ketyl radical was formed by protonation of the radical anion at low pH. A pKa of 0.77 was determined for the protonation equilibrium. The formation of hydrindantin is proposed to occur through the dimerization of the ketyl radical or the radical anion (or both). In addition, ninhydrin was shown to be a poor precursor for the photogeneration of hydroxyl radicals.  相似文献   

15.
Magnetic field effect studies of alkylcobalamin photolysis provide evidence for the formation of a reactive radical pair that is born in the singlet spin state. The radical pair recombination process that is responsible for the magnetic field dependence of the continuous-wave (CW) quantum yield is limited to the diffusive radical pair. Although the geminate radical pair of adenosylcob(III)alamin also undergoes magnetic field dependent recombination (A. M. Chagovetz and C. B. Grissom, J. Am. Chem. Soc. 115, 12152–12157, 1993), this process does not account for the magnetic field dependence of the CW quantum yield that is only observed in viscous solvents. Glycerol and ethylene glycol increase the microviscosity of the solution and thereby increase the lifetime of the spin-correlated diffusive radical pair. This enables magnetic field dependent recombination among spin-correlated diffusive radical pairs in the solvent cage. Magnetic field dependent recombination is not observed in the presence of nonviscosigenic alcohols such as isopropanol, thereby indicating the importance of the increased microviscosity of the medium. Paramagnetic radical scavengers that trap alkyl radicals that escape the solvent cage do not diminish the magnetic field effect on the CW quantum yield, thereby ruling out radical pair recombination among randomly diffusing radical pairs, as well as excluding the involvement of solvent-derived radicals. Magnetic field dependent recombination among alkylcobalamin radical pairs has been simulated by a semiclassical model of radical pair dynamics and recombination. These calculations support the existence of a singlet radical pair precursor.  相似文献   

16.
A product and time-resolved kinetic study of the one-electron oxidation of ring-methoxylated phenylpropanoic and phenylbutanoic acids (Ar(CH2)nCO2H, n = 2, 3) has been carried out at different pH values. Oxidation leads to the formation of aromatic radical cations (Ar.+(CH2)nCO2H) or radical zwitterions (Ar.+(CH2)nCO2-) depending on pH, and pKa values for the corresponding acid-base equilibria have been measured. In the radical cation, the acidity of the carboxylic proton decreases by increasing the number of methoxy ring substituents and by increasing the distance between the carboxylic group and the aromatic ring. At pH 1.7 or 6.7, the radical cations or radical zwitterions undergo benzylic C-H deprotonation as the exclusive side-chain fragmentation pathway, as clearly shown by product analysis results. At pH 1.7, the first-order deprotonation rate constants measured for the ring-methoxylated arylalkanoic acid radical cations are similar to those measured previously in acidic aqueous solution for the alpha-C-H deprotonation of structurally related ring-methoxylated alkylaromatic radical cations. In basic solution, the second-order rate constants for reaction of the radical zwitterions with (-)OH (k-OH)) have been obtained. These values are similar to those obtained previously for the (-)OH-induced alpha-C-H deprotonation of structurally related ring-methoxylated alkylaromatic radical cations, indicating that under these conditions the radical zwitterions undergo benzylic C-H deprotonation. Very interestingly, with 3,4-dimethoxyphenylethanoic acid radical zwitterion, that was previously observed to undergo exclusive decarboxylation up to pH 10, competition between decarboxylation and benzylic C-H deprotonation is observed above pH 11.  相似文献   

17.
Allylic onium salts with different hetero‐atoms and various substituent groups at the allylic double bond have been shown to be very efficient initiators for cationic polymerization. When attacked by a radical, they become radical cations, which are highly unstable species, and undergo fragmentation into smaller radical cations called onium radical cations. The reaction mechanism involves radical formation, addition and fragmentation. In our previous work, radical initiators generated in the same way and under the same conditions are studied experimentally for their ability to affect the polymerization efficiency. Here, the factors affecting the polymerization efficiency are discussed theoretically using semi‐empirical quantum mechanical techniques. The type of radical species, substituent group at the allylic side, the heteroatom at the onium side and the onium group itself are analyzed separately. For this purpose, the geometries of different onium radical cations to be fragmented are optimized and the strength of the C–heteroatom bond to be broken and the size of the radical cations after fragmentation are considered.  相似文献   

18.
A product and time-resolved kinetic study of the one-electron oxidation of ring-dimethoxylated phenylethanoic acids has been carried out at different pH values. Oxidation leads to the formation of aromatic radical cations or radical zwitterions depending on pH, and pK(a) values for the corresponding acid-base equilibria have been measured. The radical cations undergo decarboxylation with first-order rate constants (k(dec)) ranging from <10(2) to 5.6 x 10(4) s(-1) depending on radical cation stability. A significant increase in k(dec) (between 10 and 40 times) is observed on going from the radical cations to the corresponding radical zwitterions. The results are discussed in terms of the ease of intramolecular side chain to ring electron transfer required for decarboxylation, in both the radical cations and radical zwitterions.  相似文献   

19.
A simple procedure was developed to account for the contribution of freshly nucleated particles to the total polymerization rate during micellar nucleation. It has been shown that the polymerization rate of the freshly nucleated particles cannot be described by a steady-state solution for a radical population balance over the particle size distribution, i.e., the classical Smith-Ewart recursion relation. Once nucleated, the particles grow for a significant period of time with one radical before either radical desorption or radical absorption, followed by instantaneous bimolecular termination, occur. For most emulsion polymerizations, radical desorption is the dominant process for radical loss of the freshly nucleated particles. A relation for the mean time that the freshly nucleated particles grow with one radical was derived. © 1996 John Wiley & Sons, Inc.  相似文献   

20.
Anodic oxidation of trimesitylphosphine in the presence of typical nucleophilic reactants is studied by cyclic voltammetry. The results and the literature data suggest that the manifestation of radical properties is more typical for radical cations of trimesitylphosphine, because, when realizing an electrophilic path of reacting, additional energy is needed for altering the configuration of radical cations of trimesitylphosphine.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号