首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 311 毫秒
1.
The effect of small additions of the iron(III) complex with tetraphenylporphyrin (0–5%) on the structure and properties of ultrathin fibers based on poly(3-hydroxybutyrate) (PHB) was studied by differential scanning calorimetry (DSC), X-ray diffraction analysis (XRD), EPR probe method, and scanning electron microscopy. When tetramethylporphyrin was added to the PHB fibers, the crystallinity significantly increased, and the molecular mobility in the amorphous regions of the polymer decreased. The thermal treatment of the fibers (annealing at 140°C) led to significantly increased crystallinity and decreased molecular mobility in the amorphous regions of the PHB fibers. The addition of tetramethylporphyrin to the PHB fibers led to a sharp decrease in crystallinity. Ozonolysis of the fibers at small treatment times caused a considerable decrease in their molecular mobility (to 5 h), while prolonged ozonolysis led to increased mobility. The obtained fibrous materials have bactericidal properties and will find use in the development of antibacterial and antitumor therapeutic systems.  相似文献   

2.
The effect of viscosity and electric conductivity of the polymer solution of poly-3-hydrobutyrate (PHB) on the formation of ultrafine fibers was studied. It was found that these parameters largely determine the geometrical parameters and morphology of the ultrafine fibers of PHB obtained by electrostatic forming. The increase in the viscosity of solutions at increased concentration and/or molecular mass of the polymer leads to an increase in the thickness uniformity of fibers and affects the diameter and diameter distribution width of the ultrathin fibers. Modification of the solutions with an ionogen electrolyte and hydrolytic agent (formic acid) decreases the initial molecular mass of the polymer and leads to increased viscosity of the system. The obtained fibers have found use in biomedicine, in particular, in the design of the elements of the locomotor system.  相似文献   

3.
Electrospinning, a technology capable of fabricating ultrafine fibers (microfibers and nanofibers), has been investigated by various research groups for the production of fibrous biopolymer membranes for potential medical applications. In this study, poly(hydroxybutyrate-co-hydroxyvalerate) (PHBV), a natural, biocompatible, and biodegradable polymer, was successfully electrospun to form nonwoven fibrous mats. The effects of different electrospinning parameters (solution feeding rate, applied voltage, working distance and needle size) and polymer solution properties (concentration, viscosity and conductivity) on fiber diameter and morphology were systematically studied and causes for these effects are discussed. The formation of beaded fibers was investigated and the mechanism presented. It was shown that by varying electrospinning parameters within the processing window that was determined in this study, the diameter of electrospun PHBV fibers could be adjusted from a few hundred nanometers to a few microns, which are in the desirable range for constructing “biomimicking” fibrous scaffolds for tissue engineering applications.  相似文献   

4.
现代工业应用与技术领域要求材料具有良好的机械性质与热学性质,Kevlar纤维做为近年来材料领域研究的热点纤维材料,具有高强度、耐高温等良好的性能。纤维材料的性质依赖于自身的结构和组成,热分解过程对于研究材料的结构和热学性质有着十分重要的意义。热红联用技术做为一种新型的联用技术,既能定量又能定性地进行分析,在研究材料的热分解过程中具有明显的优势。由于Kevlar纤维的热分解过程在文献中少有报道,本文首次利用TG-FTIR联用技术对Kevlar纤维在室温到800 ℃的热解过程进行分析,得到了Kevlar纤维热解过程的详细步骤及各个步骤的反应产物。结果表明,Kevlar纤维的热解经历了3个阶段,分别为100~240,240~420,420~800 ℃。在500 ℃之前Kevlar纤维失重很缓慢,第三个阶段是纤维的主要失重阶段,最终固体的残留质量为56.21%。红外光谱数据表明,Kevlar纤维热解过程先释放出游离水,随后发生脱水反应和解聚反应,使纤维分子链断裂。最后纤维碎片进一步反应生成小分子气体,水、氨气、一氧化碳、二氧化碳为主要产物。其中水的析出量逐渐增大;氨气的析出量保持基本一致;一氧化碳仅在515~630 ℃产生,随后即氧化生成二氧化碳;二氧化碳的析出量经历了一个由于一氧化碳转化而产生的增长后,又下降到一定值保持稳定。  相似文献   

5.
Composite fibrous membranes based on poly(acrylonitrile)(PAN)-poly(vinyl chloride)(PVC) have been prepared by electrospinning. The fibrous membranes are made up of fibers of 850- to 1,300-nm diameters. These fibers are stacked in layers to produce a fully interconnected pore structure. Polymer electrolytes were prepared by immersing the fibrous membranes in 1 M LiClO4-PC solution for 60 min. The condition of pure PAN polymer electrolytes is jelly, which has poor mechanical performance and cannot be used. But when PVC with a good mechanical stiffener was added to PAN, the condition of composite PAN?CPVC polymer electrolytes becomes free-standing. In addition, the optimum electrochemical properties have been observed for the polymer electrolyte based on PAN?CPVC (8:2, w/w) to show ionic conductivity of 1.05?×?10?3 S cm?1 at 25 °C, anodic stability up to 4.9 V versus Li/Li+, and a good compatibility with lithium metal resulting in low interfacial resistance. The promising results showed that fibrous PEs based on PAN?CPVC (8:2, w/w) have good mechanical stability and electrochemical properties. This shows a great potential application in polymer lithium-ion batteries.  相似文献   

6.
Development of high efficiency nanofilters made of nanofibers   总被引:7,自引:0,他引:7  
Electrospinning is a fabrication process that uses an electric field to control the deposition of polymer fibers onto a target substrate. This electrostatic processing strategy can be used to fabricate fibrous polymer mats composed of fiber diameters ranging from several microns down to 100 nm or less. In this study, optimized conditions to produce nanofibers using Nylon 6 are investigated and the Nylon 6 nanofilters using nanofibers of 80–200 nm in diameter are designed and evaluated the filtration efficiency and pressure drop across the filter. When the Nylon 6 concentration is 15 wt.%, electrospun fibers have an average diameter of 80 nm, but there are many beads, and the concentration increases to 24 wt.%, the fiber diameter gradually thickens to 200 nm, but there are not any beads. When the spinning distance is small, the thinner nanofibers are produced and the more fibers are collected on the grounded electrode. The filtration efficiency of Nylon 6 nanofilters is 99.993% superior to the commercialized HEPA filter at the face velocity of 5 cm/s using 0.3 μm test particles. Even though the high pressure drops across the nanofilter, they show the potential to have the application of HEPA and ULPA grade high efficiency filter.  相似文献   

7.
A review of data on the thermo, photo-, and biodegradation of compositions of synthetic polymers with poly-3-hydroxybutyrate and poly(lactic acid) is presented. The influence of these polymers on the thermal, microstructural, and rheological properties of mixtures is examined. The destruction of pure biopolymers, as well as compositions thereof with polyethylene, poly-(3-hydroxybutyrate-co-3-hydroxyvalerate), and polycaprolactone is studied.  相似文献   

8.
A mathematical model was proposed to simulate the effect of bath concentration on coagulation kinetics at the early stage of wet spinning for the poly(acrylonitrile-co-vinyl acetate)/dimethylsulfoxide (DMSO)/water system. The dependence of critical precipitation time, components concentration distribution, and the radius of nascent fibers on the concentration of DMSO in the DMSO/water coagulation bath were estimated by solving the model equation numerically. The experimental results indicated the model was suitable to simulate the dynamic features of the early stage of the coagulation process. The critical precipitation time was found to increase with bath concentration. The mode of phase separation was changed from instantaneous demixing to delayed demixing as DMSO bath concentration increased. The simulation results showed that bath concentration influenced the phase separation path which determined the polymer concentration distribution in the spinning solution. As a result, nascent fibers with different structures would form in wet spinning and a radial homogeneous structure would be obtained when the DMSO bath concentration increased to some extent.  相似文献   

9.
《Composite Interfaces》2013,20(5):407-418
The vegetable fibers used for polymer matrix composites are usually treated to improve their adhesion with the matrix. The chemical treatment with sodium hydroxide (NaOH), although widely used, may damage the fiber surface structure, reducing its strength. The possibility of protecting vegetable fibers against alkaline chemical aggression by using hydride ions (H) was investigated in this work. Sisal fibers were modified by immersion in a NaOH aqueous solution (2, 5 and 10% wt/vol), with or without the addition of sodium borohydride (NaBH4) (1% wt/vol), under variable conditions (immersion time and temperature). The effect of using NaBH4 was investigated using fiber tensile and pull-out tests, critical length calculation, along with a Weibull statistical analysis. This agent was found to minimize sisal degradation under highly concentrated alkaline conditions in comparison with sisal treated with the pure NaOH solution. The results suggest the 5% wt/vol treatment for 60 min under room temperature in the presence of the hydride ions as the most suitable for sisal. This result may be extended to other vegetable fibers of similar composition and may promote their use in polymer composites.  相似文献   

10.
Poly(butylene sulfite) (poly-1) was synthesized by cationic ring-opening polymerization of butylene sulfite (1), which was prepared by the reaction of 1,4-butanediol and thionyl chloride, with trifluoromethanesulfonic acid (TfOH) in bulk. The polymer electrolytes composed of poly-1 with lithium salts such as bis(trifluoromethanesulfonyl)imide (LiN(SO2CF3)2, LiTFSI) and bis(fluorosulfonyl)imide (LiN(SO2F)2, LiFSI) were prepared, and their ionic conductivities, thermal, and electrochemical properties were investigated. Ionic conductivities of the polymer electrolytes for the poly-1/LiTFSI system increased with lithium salt concentrations, reached maximum values at the [LiTFSI]/[repeating unit] ratio of 1/10, and then decreased in further more salt concentrations. The highest ionic conductivity values at the [LiTFSI]/[repeating unit] ratio of 1/10 were 2.36?×?10?4 S/cm at 80 °C and 1.01?×?10?5 S/cm at 20 °C. On the other hand, ionic conductivities of the polymer electrolytes for the poly-1/LiFSI system increased with an increase in lithium salt concentrations, and ionic conductivity values at the [LiFSI]/[repeating unit] ratio of 1/1 were 1.25?×?10?3 S/cm at 80 °C and 5.93?×?10?5 S/cm at 20 °C. Glass transition temperature (T g) increased with lithium salt concentrations for the poly-1/LiTFSI system, but T g for the poly-1/LiFSI system was almost constant regardless of lithium salt concentrations. Both polymer electrolytes showed high transference number of lithium ion: 0.57 for the poly-1/LiTFSI system and 0.56 for the poly-1/LiFSI system, respectively. The polymer electrolytes for the poly-1/LiTFSI system were thermally more stable than those for the poly-1/LiFSI system.  相似文献   

11.
For atmospheric pressure plasma treatments, the results of plasma treatments may be influenced by liquids adsorbed into the substrate. This paper studies the influence of ethylene glycol (EG) pretreatment on the effectiveness of atmospheric plasma jet (APPJ) treatment of ultrahigh molecular weight polyethylene (UHMWPE) fibers with 0.31% and 0.42% weight gain after soaked in EG/water solution with concentration of 0.15 and 0.3 mol/l for 24 h, respectively. Scanning electron microscopy (SEM) shows that the surface of fibers pretreated with EG/water solution does not have observable difference from that of the control group. The X-ray photoelectron spectroscopy (XPS) results show that the oxygen concentration on the surface of EG-pretreated fibers is increased less than the plasma directly treated fibers. The interfacial shear strength (IFSS) of plasma directly treated fibers to epoxy is increased almost 3 times compared with the control group while that of EG-pretreated fibers to epoxy does not change except for the fibers pretreated with lower EG concentration and longer plasma treatment time. EG pretreatment reduces the water contact angle of UHMWPE fibers. In conclusion, EG pretreatment can hamper the effect of plasma treatment of UHMWPE fibers and therefore longer plasma treatment duration is required for fibers pretreated with EG.  相似文献   

12.
Nanocomposites have shown promise as the active layer for photovoltaic energy conversion. One example is the CdSe nanocrystal \polymer composite demonstrated by Hyunh and Greenham [#!Ref1!#,#!Ref2!#]. In this paper we investigate the baseline properties of the materials used in such a device. We present surface chemical information for CdSe nanocrystals and chemical analysis for poly-(3-hexylthiophene) (P3HT) polymer. Received 30 November 2000  相似文献   

13.
The self-organization of solutions of organic and inorganic polymers on the surface of round fibers during the evaporation of a solvent leads to the formation of longitudinal and transverse periodic structures. The structure period ranges from several tens to several hundreds of microns and depends on the type of polymer, the initial solution composition, and the fiber diameter. Nanoporous periodic structures made of inorganic materials can be formed from a suspension of inorganic nanoparticles in a polymer solution upon thermal decomposition of the polymer. These processes are shown to be used to create long-period fiber gratings for fiber sensor systems and fiber optical filters.  相似文献   

14.
We report the temperature-dependent photoluminescence (PL) behavior of two poly (p-phenylene-vinylene) derivatives with different backbones, a homopolymer poly-[2-methoxy-5-(2-ethyl-hexyloxy)-1,4-phenylene-vinylene] (MEH-PPV) and a copolymer poly-{[2-methoxy-5-(2-ethylhexyloxy)-1,4-phenylene-vinylene]-alt-[2,5-diphenylene-1,3,4-oxadiazole-vinylene]} (MEH-OPPV). The PL peak positions of the MEH-PPV in both solid solution and film are blue shifted with increasing measurement temperature because the thermally induced torsion and libration modes reduce the conjugation lengths of the polymer, but the shift rate is smaller in the MEH-PPV film than that in the solid solution. The PL peak position of the MEH-OPPV film is independent of measurement temperature because there is a large dihedral angle between the adjacent monomer units. The large dihedral angle increases the conformational disorder to eliminate the effect of the disorder induced by the thermally induced torsion and libration modes on the conjugation lengths of the MEH-OPPV. PACS 73.61.Ph; 78.55.Kz  相似文献   

15.
《Current Applied Physics》2010,10(4):1005-1008
Silver (Ag) nanoparticles (∼3 nm) were synthesized using silver nitrate as the starting precursor, ethylene glycol as solvent and poly (N-vinylpyrrolidone) (PVP) introduced as a capping agent. These nano-Ag particles were reinforced in nylon matrix by electrospinning of nylon-6/Ag solution in 2,2,2-trifluoroethanol and composite nanofibrous membranes were synthesized. The effects of solution concentration and relative humidity (RH) on the resultant fibrous membranes were studied. Scanning electron microscopy and Transmission electron microscopy was used to study the size and morphology of the fibers. It was observed that concentration and RH could be used to modulate the fiber diameter. Tensile test was used to evaluate the mechanical property of these electrospun composite membranes. The composite membranes showed higher strength (approx. 2–3 times increase in strength) compare to as synthesized nylon fibers.  相似文献   

16.
Abstract

In this paper, a green solvent for chitosan, plasma acid, was made and chitosan/plasma-acid solutions were prepared. An environmentally friendly chitosan/polyvinyl alcohol (PVA) nano-membrane was prepared via electrospinning due to the difficulty of electrospinning of pure chitosan/plasma-acid solutions. Two blending methods of chitosan with PVA were investigated. One way was to mix a chitosan/plasma-acid solution (1%) and a PVA/water solution (10%) with the volume ratios of 2:8, 3:7, 4:6, 5:5, 6:4, 7:3 and 8:2, respectively. The results showed that fibrous nano-membranes could start to be formed at a chitosan/PVA mixing ratio of 7:3 up to the ratio of 2:8 with increasing PVA. The average fiber diameters increased with increased adding of PVA, ranging from 74.7?nm for the 7:3 ratio to 280.7?nm for the 2:8 ratio. The other way to prepare the chitosan/PVA solutions was to put PVA and chitosan powders into the plasma acid together. Fibrous nano-membranes could also be formed at 6% PVA and 10% PVA solution, both with 1% chitosan compositions. The average diameters of the resulting nano-fibers were 144.67?nm and 300.7?nm, respectively. The Fourier transform infrared (FTIR) spectroscopy results showed that the chitosan was bonded to the PVA by hydrogen bonds in the nano-membranes (6% PVA, 1% chitosan). It is noted that both of the two blending methods permitted obtaining chitosan/PVA nano-membranes. As indicated, the PVA in the solution had a large effect on the diameters of the nano-fibers. The first method permitted obtaining nano-fibers with smaller diameter. The maximum concentration of chitosan in the solution was 0.7% (7:3 ratio). The second method was simpler and permitted increasing the chitosan concentration in the solution to 1% for both the 6% and 10% concentrations of PVA.  相似文献   

17.
Photon stimulated ion desorption (PSID) and Near-edge X-ray absorption fine structure (NEXAFS) studies have been performed on poly-3-hexylthiophene and nanocomposites thin films made of poly-3-hexylthiophene/multi-walled carbon nanotubes (MWNT) filled with iron/iron-oxide. The experiments were performed at the Brazilian Synchrotron Light Source (LNLS) operating in a single-bunch mode following sulphur K-shell photoexcitation and using time-of-flight mass spectrometry for ion analysis. Both PSID mass spectra show great similarity and exhibit desorption of the polymer fragments only. This result seems to be in accordance with previous morphological studies on these materials, which suggested that the nanotubes are highly dispersed and involved by the polymer. Although similar, the spectra present shifts in the direction of greater time-of-flights in the case of the poly-3-hexylthiophene/multi-walled carbon nanotube composite. This behavior may be related to the donation of electronic charge between the polymer matrix and the carbon nanotubes. In both cases, S+ desorption seems to be suppressed, which may be due to the hexyl side-chains. Relative desorption ion yield curves have been determined as a function of the photon energy, which reproduced the photoabsorption spectrum. These results are discussed in terms of the indirect XESD (X-ray induced electron stimulated desorption) process.  相似文献   

18.
A poly(amic acid) (PAA) solution in xylene was prepared for electrospinning in order to fabricate fibers. However, jet breaking occurred at the point of the occurrence of whipping instability, resulting in forming micro-particles. This was an exceptional jet behavior compared with the general electro-spraying process that occurs directly from the surface of the polymer droplet. It is important to understand the mechanism of electrospinning and the instability of PAA in order to form fibers for mat deposition. Thus, the behavior of the jet breaking was clearly observed by a high-speed camera and the dynamic behavior of the jet was explored by an image analysis technique. Furthermore, polyacrylonitrile (PAN) was added to the PAA/xylene solution with various concentrations to change the elongation viscosity. Uniform diameter fibers were obtained by increasing the content of PAN to the level that the drag force between the polymer chains increased enough to overcome the drawing force. As a result the optimum content ratio of the PAA/PAN mixed solution to obtain the desired fiber spinning and deposition was determined as being 5:5.  相似文献   

19.
Micronization of poly-3-hydroxybutyrate (PHB) by the supercritical fluid antisolvent precipitation (SAS) technique using supercritical carbon dioxide as an antisolvent was studied experimentally. The possibility of preparing particles of varying morphology (including hollow spheres) and specified size from 100 nm to 20 μm was demonstrated. The influence of different mechanisms of solid phase formation during SAS micronization on the size and morphology of PHB microparticles under different experimental conditions was considered.  相似文献   

20.
In this study, we describe the first reported preparation of rosin in fiber form through use of an electrospinning technique utilizing various solvent systems. The polymer concentration of the formed fiber was studied by using various solvents such as chloroform, ethanol, N-N dimethylformamide (DMF), tetrahydrofuran (THF), acetone, and methylene chloride (MC). An electrospray of the solution resulted in the beaded form of the rosin. By varying the polymer concentration with MC, we were then able to obtain uniform fibers. However, the fibers exhibited large diameter. We believe that it is possible to reduce the diameter of the rosin fibers through appropriate selection of electrospinning parameters. In addition, the morphological transitions from beads, to beaded fiber, to fiber were studied at different polymer concentrations. We propose a possible physical cross linking mechanism for the formation of rosin fibers during the electrospinning process. Our results demonstrate the feasibility of producing fiber nanostructures of rosin by using an electrospinning technique.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号