首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Electrified co-jetting of two aqueous polymer solutions followed by a thermal cross-linking step was used to create water-stable biphasic nanocolloids. For this purpose, aqueous solution mixtures of poly(acrylamide-co-acrylic acid) and poly(acrylic acid) were employed as jetting solutions. When the biphasic nanocolloids created by side-by-side electrified co-jetting were thermally treated, a cross-linking reaction occurred between amide groups and carboxylic groups to form stable imide groups. Infrared spectroscopy was employed to monitor the reaction. The quality and the integrity of the resulting biphasic nanocolloids were confirmed by confocal laser scanning microscopy, flow cytometry analysis, and dynamic light scattering. Selective encapsulation of two biomolecules in each phase of the biphasic colloids was maintained even after thermal reaction and suspension in aqueous environment. Well-dispersed spherical colloids with stable dye loadings in each hemisphere were kept intact without aggregation or dissolution for several weeks. Finally, biphasic nanocolloids were selectively surface-modified with a biotin-dextran resulting in water-stable particles to ensure binding of proteins only to a single hemisphere.  相似文献   

2.
Monodisperse poly(dl-lactic acid) (PLA) particles of diameters between 11 and 121 μm were fabricated in flow focusing glass microcapillary devices by evaporation of dichloromethane (DCM) from emulsion droplets at room temperature. The dispersed phase was 5% (w/w) PLA in DCM containing 0.1-2 mM Nile Red and the continuous phase was 5% (w/w) poly(vinyl alcohol) in reverse osmosis water. Particle diameter was 2.7 times smaller than the diameter of the emulsion droplet template, indicating very low particle porosity. Monodisperse droplets have only been produced under dripping regime using a wide range of dispersed phase flow rates (0.002-7.2 cm(3)·h(-1)), continuous phase flow rates (0.3-30 cm(3)·h(-1)), and orifice diameters (50-237 μm). In the dripping regime, the ratio of droplet diameter to orifice diameter was inversely proportional to the 0.39 power of the ratio of the continuous phase flow rate to dispersed phase flow rate. Highly uniform droplets with a coefficient of variation (CV) below 2% and a ratio of the droplet diameter to orifice diameter of 0.5-1 were obtained at flow rate ratios of 4-25. Under jetting regime, polydisperse droplets (CV > 6%) were formed by detachment from relatively long jets (between 4 and 10 times longer than droplet diameter) and a ratio of the droplet size to orifice size of 2-5.  相似文献   

3.
Droplet formation in a wide-type microfluidic T-junction was studied using the computational fluid dynamics (CFD) method. Two distinct regimes of droplet formation were confirmed: dripping and jetting; and, at both regimes, droplet size decreases with an increase in capillary number. CFD simulation demonstrated that droplet formation in the T-junction can be divided into three steps: droplet emergence and growing up; separation with the disperse phase; and detachment from the channel wall. The wettability of the channel wall significantly affects the process of droplet detachment from the channel wall; also, the simulation clearly showed that droplets can be formed only when the continuous phase fluid preferentially wets the channel wall, that is, its contact angle on the wall is smaller than 90°. Finally, the CFD study verified that the disperse phase flow rate can significantly affect the droplet size as well as the mechanism of droplet formation.  相似文献   

4.
Summary: Polyaniline (PANI) is successfully self‐assembled with poly(N‐vinylpyrrolidone) (PVP) into aqueous nanocolloids. The typical morphology of the colloids is studied by atomic force microscopy (AFM), which reveals spherical nanoparticles with a diameter of 80–150 nm. A possible mechanism for such a post‐synthetic self‐assembly process is proposed.

AFM micrograph of PANI aqueous nanocolloids stabilized by PVP via a novel post‐synthetic self‐assembly method.  相似文献   


5.
羧酸盐类成核剂在聚2,6-萘二甲酸乙二酯中的化学成核   总被引:3,自引:0,他引:3  
采用与PEN分子结构单元相似的 2 ,6 萘二甲酸二甲酯 (DMN)和熔点较低的邻氯苯甲酸钠 (SOCB)为模型化合物 ,用DSC、FTIR、带热台偏光显微镜 (HPOM)和HPLC等方法 ,研究了DMN和SOCB在热处理过程中的化学反应 .DSC和HPOM研究也证明了PEN与SOCB在高温下发生化学反应 .因而提出羧酸盐类成核剂在PEN中的成核是“化学成核” .即在高温下羧酸盐类成核剂和PEN发生化学反应 ,生成PEN的羧端基离子盐 ,该离子盐是真正的成核剂 ,起到成核作用  相似文献   

6.
The interfacial property in polymer-liquid crystal systems is quite different from flexible polymer-polymer mixtures due to the anisotropic properties of liquid crystals. The apparent interfacial tension between a liquid crystal and a flexible polymer was measured by deformed droplet retraction method. The deformation and recovery of a single liquid crystal droplet dispersed in a poly(dimethylsiloxane) matrix were realized by a transient shear flow and observed by polarized optical microscope. The apparent interfacial tension of polymer-liquid crystal system was found to be greatly dependent on the temperature, initial droplet deformation and liquid crystal droplet size.  相似文献   

7.
ABSTRACT

Polymer dispersed liquid crystal (PDLC) systems based on a smectic liquid crystal embedded in polyvinylalcohol-boric acid (PVAB) as biocompatible carrying matrix were prepared and characterised. The smectic liquid crystal contains biologically friendly structural blocks and was designed to have a direct isotropic–smectic transition and a mesophase stability range at human body temperature. The resulted PDLCs were characterised from morphological and thermotropic aspects by polarised light microscopy (POM), differential scanning calorimetry (DSC), scanning electron microscopy (SEM) and Raman microspectroscopy, and their surface properties were determined by contact angle measurements and surface energy calculations.

It was concluded that the electron-deficient PVAB matrix constrains the ester liquid crystal to grow as spherical droplets with planar anchoring. The droplet diameter was comprised in the range 4–11 µm, with a predominant droplet population around 7 µm and a narrower polydispersity as the amount of the liquid crystal in the polymeric matrix increases. The resulted PDLC films exhibited versatile morphology and surface properties which allow targeting of their application.  相似文献   

8.
Electrospraying, or electrohydrodynamic jetting, is one of several jet-based technologies being explored to process living biological organisms. One of the key advantages of electrospraying is its ability to deposit advanced materials with high resolution that cannot be obtained with other competing technologies, such as ink-jet printing. However, to generate a controlled droplet size distribution in the micrometre range necessary for precision drop and placement of materials requires jetting in stable cone-jet mode. In this paper, we describe the experimental set-up and conditions by which electrospray jetting in stable cone-jet is achieved and use this methodology to process a highly concentrated biological suspension having 10(7) cells ml(-1), the highest cellular loading processed to this day by a jetting approach in this jet based category. The areas of study to which this technology may be applied span the physical and the life sciences.  相似文献   

9.
Novel sheetlike Cu2O two-dimensional (2D) nanoarchitectures were successfully synthesized via a copper nanoparticle-mediated process for the first time. Uniform and nearly monodisperse Cu nanocolloids were firstly synthesized by disproportionating reaction of Cu+ at the surfactant-free ambient conditions, and Cu2O nanosheets were subsequently synthesized by choosing ethanol solvent agent to limit the oxidized processes of Cu nanocolloids. The synthesized products were systematically studied by X-ray powder diffraction, scanning electron microscopy (SEM), transmission electron microscopy (TEM) and UV-vis absorption spectra. It was demonstrated that the solvent agent of ethanol played key roles in the formation of the as-synthesized nanosheets. By choosing the different solvent agents to limit the oxidized processes, Cu2O nanospheres and nanocubes can be selectively synthesized accordingly.  相似文献   

10.
Monodispersed BaSO4 micrometer and submicrometer sized particles were produced by a simple precipitation reaction in the presence of poly(methacrylic acid) (PMAA) at the ambient temperature. Scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray diffraction (XRD) and electron diffraction (ED) were used to characterize the obtained BaSO4 particles, and polycrystalline nature of the BaSO4 products was revealed. A "polymer-M in situ template" model was proposed to elucidate the formation process of such polycrystalline BaSO4 particles.  相似文献   

11.
利用长脉宽毫秒激光烧蚀浸没在循环水中的金属镍靶制备了大量的氧化镍(NiO)纳米立方体, 通过透射电子显微镜(TEM)、 选区电子衍射(SAED)、 X射线衍射(XRD)和能量色散谱(EDS)等手段表征了产物的形貌和结构. 结果表明, 高功率密度激光产生的高温高压条件是形成NiO纳米立方体的最重要因素. 激光功率密度高于104 W/cm2时可以生成NiO纳米立方体, 当功率高于该阈值时激光首先将镍靶烧蚀为金属液滴, 高温的金属液体加热周围液体, 并由于液体的限制效应使得压力进一步升高, 最后金属液滴与液体发生表面反应生成NiO纳米立方体.  相似文献   

12.
The concentration of ions in liquid crystals with fully ionised ionic contaminants does not depend on the temperature. Nanoparticles dispersed in the same liquid crystals change the number of mobile ions through the temperature-dependent adsorption/desorption process. As a result, the concentration of ions in liquid crystal nanocolloids is a strong function of their temperature. This type of temperature dependence is governed by the values of the adsorption activation energy and desorption activation energy. A commonly observed scenario is an increase in the concentration of mobile ions in liquid crystal nanocolloids as their temperature goes up. In this article, an opposite effect is modelled. Under certain conditions, the concentration of ions in liquid crystal nanocolloids decreases with increasing temperature. This unusual behaviour is analysed considering liquid crystals doped with both 100% pure and contaminated nanoparticles.  相似文献   

13.
Ordered 2-D structures composed of poly(N-isopropylacrylamide) (PNIPAM) microgel particles that had regularity on a sub-micrometer length scale were prepared. By using sterically stabilized PNIPAM microgel particles as components, the ordered array was formed by a self-assembly process. The particle array was prepared by depositing a droplet of the microgel dispersion on a substrate. Atomic force microscopy observation of the resulting thin films revealed that they comprised a monolayer particle array. The periodic structure of the array produced iridescent colors due to optical diffraction. Since a homogeneous particle array can be prepared simply by drying the dispersion, this particle dispersion may be considered as a new ink whose color is generated from the microstructure in the films produced.  相似文献   

14.
A mass restriction principle has been applied for the synthesis of precipitated calcium carbonate (PCC) with particle sizes from nanometer to micrometer via a simple emulsion liquid membrane (ELM) process. The internal liquid droplets in ELM were designed as individual microreactors in which the concentration and the total mass of the reaction chemicals were carefully mediated. Instrumental analysis, such as Fourier transform infrared (FTIR), wide X-ray diffraction (WXRD), scanning electron microscopy (SEM), and energy dispersive X-ray (EDX) analysis, confirmed a predominant calcite form of the final product via this process. The comparison of calculated particle sizes with that obtained from experimental measurements using dynamic light scattering (DLS), transmission electron microscopy (TEM) and SEM analysis suggested that approximately one PCC particle was formed in one water-in-oil (w/o) droplet.  相似文献   

15.
Charged droplet processing methodology, that utilizes electrodynamic levitation technology to control the trajectories of picoliter volume charged droplets and deliver them to a target plate at atmospheric pressure, has been developed. Termed wall-less sample preparation (WaSP), this methodology offers several features that could prove beneficial to the preparation of sample spots from separation column effluents for matrix-assisted laser desorption/ionization mass spectrometry (MALDI-MS) analysis. These features include solute pre-concentration factors of 10(1) to 10(3) due to volatile solvent evaporation prior to droplet deposition onto the target plate, high spatial accuracy of the deposition position of each processed droplet (+/-5 microm), and the ability to prepare sample spots as small as 20 microm in diameter from a single droplet. Here a new mode of operation of this methodology is described and used as an offline post-column pre-concentrating interface between capillary liquid chromatography (capLC) and a target plate for offline MALDI-MS. Using a fraction from the capLC separation of peptides produced by the proteolytic digestion of the protein cytidine 5'-triphosphate:phosphocholine cytidylyltransferase, MALDI sample spots were prepared using the dried-droplet method, direct piezoelectric droplet dispensing, and the processing of piezo-dispensed droplets by WaSP. The sample spot morphology was investigated using light microscopy, and peptide ion abundances produced by MALDI were measured using time-of-flight (TOF) MS. The advantages of developing an online capLC/WaSP interface with MALDI-MS in the future are discussed along with some of the challenges that may be encountered in such an endeavor.  相似文献   

16.
Poly(l ‐lactic acid) is a linear aliphatic thermoplastic polyester that can be produced from renewable resources. A poly(l ‐lactic acid)‐modified silica stationary phase was newly prepared by amide bond reaction between amino groups on aminopropyl silica and carboxylic acid groups at the end of the poly(l ‐lactic acid) chain. The poly(l ‐lactic acid)‐silica column was characterized in reversed‐phase liquid chromatography and hydrophilic interaction liquid chromatography with the use of different mobile phase compositions. The poly(l ‐lactic acid)‐silica column was found to work in both modes, and the retention of test compounds depending on acetonitrile content exhibited “U‐shaped” curves, which was an indicator of reversed‐phase liquid chromatography/hydrophilic interaction liquid chromatography mixed‐mode retention behavior. In addition, carbonyl groups included into the poly(l ‐lactic acid) backbone work as an electron‐accepting group toward a polycyclic aromatic hydrocarbon and provide π–π interactions.  相似文献   

17.
Magnetic pH-sensitive microcontainers were produced by a four-step process. The first step involves the synthesis of citrate-modified magnetic nanoparticles via the coprecipitation method. The second step consists of the encapsulation of magnetic nanoparticles in non-cross-linked poly(methacrylic acid) (PMAA) microspheres through distillation precipitation polymerization, resulting in a core/shell structure. The third step concerns the formation of a poly(N,N'-methylenebis(acrylamide)-co-mathacrylic acid) (P(MBAAm-co-MAA)) layer on the surface of magnetic PMAA microspheres by second distillation precipitation polymerization in order to produce a trilayer hybrid microsphere. The last step deals with the removal of PMAA layer in ethanol and formation of a stable P(MBAAm-co-MAA) microcontainer with magnetic nanoparticles entrapped inside the formed cavity. This process is simple and leads to the formation of superparamagnetic pH-sensitive microcontainers. The structure and properties of the magnetic microcontainers were investigated by X-ray diffraction (XRD), transmission electron microscopy (TEM), scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FT-IR), vibrating sample magnetometry (VSM), and dynamic light scattering (DLS) to determine the functionalities of the hybrid structure. The magnetic pH-sensitive microcontainers were loaded with Daunorubicin and tested with respect to release rate at different pH values in order to evaluate their functionality as controlled release system.  相似文献   

18.
Light emitting devices containing conjugated polymers are conveniently fabricated using ink-jet printing. A common problem in the processing of these materials is that the Newtonian viscosity of the polymer solution is not sufficient to describe the jetting performance because the molecular weights and concentrations employed are such that the resulting solutions are elastic. These differences in fluid elasticity levels cannot be measured using traditional techniques like dynamic mechanical experiments or the first normal stress difference in shear, but strongly impact the jetting behavior of the liquid. In this study, a variety of polystyrene solutions in DECALIN having a shear viscosity of ~5 mPa s but different elasticity levels were examined for their jetting behavior. The jetting behavior of these solutions was studied visually using drop-on-demand jetting equipment and their rheology was characterized using a custom extensional rheometer designed for measuring the elasticity of such low viscosity liquids. If elasticity effects are absent as in Newtonian liquids (corresponding to a Trouton ratio of 3) satellite drops are formed resulting in loss of liquid and poor positioning. On the other hand, if elasticity effects are very large (Trouton ratios ≫4) separation problems occur at the nozzle with undesirable “tailing.” The optimum range for stable, efficient jetting occurs at Trouton ratios in a narrow band between 3 and ~5. A very slight degree of elasticity corresponding to a Trouton Ratio around four thus seems to be optimum for the jetting process. This appears to be the first time that such a design criterion has been outlined for this process. Such an approach complements thermal techniques for elucidating the role of molecular and flow properties on the processing behavior of polymeric systems.  相似文献   

19.
Design of a superhydrophobic surface using woven structures   总被引:2,自引:0,他引:2  
The relationship between surface tension and roughness is reviewed. The Cassie-Baxter model is restated in its original form, which better describes the most general cases of surface roughness. Using mechanical and chemical surface modification of nylon 6,6 woven fabric, an artificial superhydrophobic surface was prepared. A plain woven fabric mimicking the Lotus leaf was created by further grafting 1H,1H-perfluorooctylamine or octadecylamine to poly(acrylic acid) chains which had previously been grafted onto a nylon 6,6 woven fabric surface. Water contact angles as high as 168 degrees were achieved. Good agreement between the predictions based on the original Cassie-Baxter model and experiments was obtained. The version of the Cassie-Baxter model in current use could not be applied to this problem since the surface area fractions in this form is valid only when the liquid is in contact with a flat, porous surface. The angle at which a water droplet rolls off the surface has also been used to define a superhydrophobic surface. It is shown that the roll-off angle is highly dependent on droplet size. The roll-off angles of these superhydrophobic surfaces were less than 5 degrees when a 0.5 mL water droplet was applied.  相似文献   

20.
We demonstrate spatially controlled photoreactions within bicompartmental microparticles and microfibers. Selective photoreactions are achieved by anisotropic incorporation of photocrosslinkable poly(vinyl cinnamate) in one compartment of either colloids or microfibers. Prior to photoreaction, bicompartmental particles, and fibers were prepared by EHD co‐jetting of two compositionally distinct polymer solutions. Physical and chemical anisotropy was confirmed by confocal laser scanning microscopy, Fourier‐transformed infrared spectroscopy, and scanning electron microscopy. The data indicate adjustment of polymer concentrations of the jetting solutions to be the determining factors for particle and fiber structures. Subsequent exposure of poly(vinyl cinnamate)‐based particles and fibers to UV light at 254 nm resulted in spatially controlled crosslinking. Treatment of the crosslinked bicompartmental colloids with chloroform produced half‐moon shaped objects. These hemishells exhibited a distinct porous morphology with pore sizes in the range of 70 nm. Based on this novel synthetic approach, Janus‐type particles and fibers can be prepared by EHD co‐jetting and can be selectively photocrosslinked without the need for masks or selective laser writing.

  相似文献   


设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号