首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
合成了稀土(钬, Ho)-氨基酸(甘氨酸, C2H5O2N)二元配合物Ho(NO3)3(C2H5O2N)4·H2O, 并且通过化学分析、元素分析和红外(IR)光谱对配合物进行了表征. 用高精度全自动绝热量热仪, 测定了该配合物在80-390 K温度区间的定压摩尔热容(Cp,m). 利用实验测定的热容数据, 采用最小二乘法, 将热容曲线上热容峰以外的两段平滑区的摩尔热容对折合温度进行拟合, 建立了热容随折合温度变化的多项式方程. 根据热容与焓、熵的热力学关系,计算出了配合物在80-390 K温度区间内,每隔5 K,相对于298.15 K的摩尔热力学函数(HT,m-H298.15,m)和(ST,m-S298.15,m). 通过热容曲线分析, 计算出了350 K附近转变过程的焓变(ΔtrsHm)和熵变(ΔtrsSm). 用差示扫描量热法(DSC)测定了配合物的热稳定性.  相似文献   

2.
A novel compound, [HN(C2H4)3N][(VO)2(HPO3)2(OH)(H2O)]·H2O, was hydrothermally synthesized and characterized by single crystal X-ray diffraction. This compound crystallizes in the monoclinic system with the space group C2/c and cell parameters a=11.0753(3) Å, b=17.8265(6) Å, c=16.5229(5) Å, and β=92.362(2)°. The structure of the compound consists of vanadium phosphite layers which are built up from the infinite one-dimensional chains of [(VO)(H2O)(HPO3)2]2− of octahedral VO5(H2O) and pseudo pyramidal [HPO3], and bridging binuclear fragments of [VO(OH)]2. Thermogravimetric analysis and magnetic susceptibility data for this compound are given.  相似文献   

3.
Crystals of the rhenium cluster complex (H3O)4[(C2H5)4N]6[Th2Cl4(H2O)12O]3[Re4Se4(CN)12]4 are obtained in an acidic (HCl) aqueous solution by the reaction of cluster salt K4[Re4Se4(CN)12]·6H2O with ThCl4 and (C2H5)4NCl. Single crystal X-ray analysis shows that the title compound is ionic and crystallizes in the cubic crystal system (a = 22.7322(3) ?, V = 11746.93(27) ?3, Z = 2, I4 3m space group, R = 0.0350). It contains [Th2Cl4(H2O)12O]2+ cations with two thorium atoms bonded to each other through the bridging oxygen atom forming an angle of 180° in the structure.  相似文献   

4.
A new vanadium(III) phosphite, (C4H8N2H4)0.5(C4H8N2H3)[V4(HPO3)7(H2O)3]1.5H2O, has been synthesized hydrothermally by using V2O5, H3PO3 as reactants, piperazine as the structure-directing agent. The as-synthesized product was characterized by powder X-ray diffraction, IR spectroscopy, inductively coupled plasma analysis, thermogravimetric analysis, and SQUID magnetometer. Single-crystal X-ray diffraction analysis shows that the title compound crystallized in the trigonal space group (No. 165) with the parameters: , , and Z=4. Its structure is built up by alternation of octahedral VO6 or VO5(H2O) and pseudo-pyramidal HPO3 units to form infinite 2D layers, and these layers are interconnected by sharing vertex-oxygen with octahedral VO6 units to generate a 3D open-framework structure with 12-membered ring channels in a and b directions, respectively, where there exist entrapped diprotonated and mono-protonated piperazine cations, and water molecules. Magnetic measurement indicates that paramagnetic behavior is observed down to 4 K.  相似文献   

5.
1-Allyl-4-aminopyridinium chloride reacts with Cu(NO3)2 · 3H2O in an ethanolic solution under the conditions of ac electrochemical synthesis at copper electrodes to form crystals of compound [(NH2C5H4N(C3H5))2Cu3Cl3(NO3)2] (I). The crystals of compound I are monoclinic: space group P21/c, Z = 4, a = 25.770(7), b = 7.230(4), c = 12.505(5) ?, β = 92.58(3)°, V = 2328(2) ?3. The direct interaction of 1-allylquinolinium nitrate with Cu(NO3)2 · 3H2O in a methanolic solution in the presence of metallic copper yields crystals of compound [C9H7N(C3H5)Cu(NO3)2] (II). The crystals of compound II are triclinic: space group P , a = 6.756(3), b = 8.391(4), c = 12.489(5) ?, α = 77.18(3)°, β = 89.48(4)°, γ = 73.32(3)°, V = 662.0(5) ?3. The structure of compound I is built of infinite linear anions: polymeric fragments {(NH2C5H4N(C3H5))2Cu3Cl3(NO3)2} n . Each of two copper atoms (Cu(1) and Cu(2)) π-coordinates the C=C bonds of the allyl groups of the 1-allyl-4-aminopyridinium cations, the oxygen atom of the nitrate ions, and two chlorine atoms. The third copper atom Cu(3) is linearly linked with two chlorine atoms. Particular polymeric fragments are additionally joined by the N-H…O, C-H…O, C-H…Cl hydrogen bonds. The crystal structure of compound II is built-up of the isolated L2Cu2(NO3)4 fragments (L is the 1-allylquinolinium cation). The metal atom is localized in the trigonal pyramidal coordination environment of three oxygen atoms of the nitrate ions and of the C=C bond of the allyl group of the cation. The particular L2Cu2(NO3)4 fragments are additionally joined by the C-H…O hydrogen bonds. Original Russian Text ? A.V. Pavlyuk, T. Lis, M.G. Mys’kiv, 2009, published in Koordinatsionnaya Khimiya, 2009, Vol. 35, No. 6, pp. 458–462.  相似文献   

6.
Tren amine cations [(C2H4NH3)3N]3+ and zirconate or tantalate anions adopt a ternary symmetry in two hydrates, [H3tren]2·(ZrF7)2·9H2O and [H3tren]6·(ZrF7)2·(TaOF6)4·3H2O, which crystallise in R32 space group with aH = 8.871 (2) Å, cH = 38.16 (1) Å and aH = 8.758 (2) Å, cH = 30.112 (9) Å, respectively. Similar [H3tren]2·(MX7)2·H2O (M = Zr, Ta; X = F, O) sheets are found in both structures; they are separated by a water layer (Ow(2)-Ow(3)) in [H3tren]2·(ZrF7)2·9H2O. Dehydration of [H3tren]2·(ZrF7)2·9H2O starts at room temperature and ends at 90 °C to give [H3tren]2·(ZrF7)2·H2O. [H3tren]2·(ZrF7)2·H2O layers remain probably unchanged during this dehydration and the existence of one intermediate [H3tren]2·(ZrF7)2·3H2O hydrate is assumed. Ow(1) molecules are tightly hydrogen bonded with -NH3+ groups and decomposition of [H3tren]2·(ZrF7)2·H2O occurs from 210 °C to 500 °C to give successively [H3tren]2·(ZrF6)·(Zr2F12) (285 °C), an intermediate unknown phase (320 °C) and ZrF4.  相似文献   

7.
The crystal structures of the Rh[(EtO)2PS2]3 (I) and Co[(PhO)2PS2]3 (II) chelate compounds were determined from X-ray diffraction (XRD) data (CAD-4 diffractometer, MoK β radiation, 1193 F hkl , R = 0.0516 for I and 513 F hkl , R = 0.0305 for II). Crystals I are monoclinic: a = 14.233(3) Å, b = 13.570(3) Å, c = 14.272(3) Å; β = 90.66(3)°, V = 2756.3(10) Å3, Z = 4, ρcalc = 1.587 g/cm3, space group C2/c. Crystals II are trigonal: a = 15.149(2) Å, c = 30.306(6) Å; V = 6023.2(16) Å3, Z = 6, ρcalc = 1.493 g/cm3, space group R3ˉ. Structures I and II consist of discrete mononuclear molecules. The coordination polyhedra of the M atoms (M = Rh, Co) are distorted octahedra formed by six sulfur atoms of three cyclic bidentate (RO)2 PS2 ligands. Original Russian Text Copyright ? 2008 by R. F. Klevtsova, L. A. Glinskaya, and S. V. Larionov __________ Translated from Zhurnal Strukturnoi Khimii, Vol. 49, No. 2, pp. 330–334, March–April, 2008.  相似文献   

8.
A new hybrid organic-inorganic three-dimensional compound, [Co4(OH)2(H2O)2](C4H11N2)2[C6H2(CO2)4]2·3H2O 1, has been synthesized via hydrothermal reactions and characterized by single-crystal X-ray diffraction, infrared spectroscopy, thermogravimetric analysis, and magnetic techniques. Compound 1 crystallizes in the monoclinic space group P21/n (no. 14) with a=6.3029(9) Å, b=16.413(2) Å, c=17.139(2) Å, β=98.630(2)°, V=1735.0(4) Å3, Z=2. Compound 1 contains tetranuclear Co4(μ3-OH)2(H2O)2 clusters that are inter-linked by pyromellitate bridging ligands into a three-dimensional structure containing one-dimensional tunnels along the a-axis with water and pendant monoprotonated piperazine molecules in the center. The variable temperature magnetic susceptibility was measured from 2 to 300 K at 5000 Oe showing a predominantly anti-ferromagnetic interaction in 1, and the field dependence of magnetization was measured at 2, 5, 15, and 20 K indicating the competition of magnetic interactions in the tetranuclear centers.  相似文献   

9.
在pH=7.5的水溶液中, Na2WO4•2H2O, NaAsO2, CoCl2•6H2O与对氨基吡啶反应, 得到了一种新的夹心型杂多钨酸盐Na6(C5H7N2){[Na(H2O)2]3Co(H2O)5[Co(H2O)]3(AsW9O33)2}•27H2O单晶, 用X射线单晶衍射法及元素分析确定了其结构, 晶体属三斜晶系, P 空间群, 其晶胞参数为: a=1.3276(8) nm, b=1.7581(10) nm, c=2.4381(14) nm, α=70.954(9)°, β=86.663(9)°, γ=72.885(9)°, V=5.136(5) nm3, Z=2, R1=0.0608, wR2=0.0848 [I>2σ(I)]. 在{[Na(H2O)2]3Co(H2O)5[Co(H2O)]3(AsW9O33)2}7-阴离子中, 一个Co2+与聚阴离子{[Na(H2O)2]3[Co(H2O)]3(AsW9O33)2}9的一个端基氧共价连接, Co2+呈现出5和6两种配位数, 质子化的氨基吡啶正离子作为抗衡离子存在于晶体之中. 对标题化合物进行了IR, UV-Vis, TG-DSC表征. 对该化合物、Na2WO4•2H2O及CoCl2•6H2O催化H2O2氧化乙醛的活性进行了比较研究, 该化合物的催化活性远优于简单化合物Na2WO4•2H2O和CoCl2•6H2O.  相似文献   

10.
The crystal structure of a double salt of sodium and cesium with 2-diphenylacetyl-1,3-indandione of the composition [Cs2Na(H2O)2(C23H16O3)(C23H15O3)3] (I) was studied by X-ray crystallography. The crystals of I are monoclinic, Z = 2, space group P21/n, a = 10.212(2) ?, b = 23.479(5) ?, c = 15.638(3) ?, β = 98.30(03)°. The compound contains [Cs2NaO10] trimers, in which the central Na atom shares two edges with two Cs atoms through deprotonated bridging ligands. The trimers are connected to adjacent trimers by paired C-H...O contacts to form layers. The layers form an infinite open framework via hydrogen bonds between the oxygen atoms of keto groups of noncoordinated indandione moieties and water molecules that enter the cesium coordination sphere in trimers of the adjacent layers.  相似文献   

11.
Electrical conductivities were measured for the ternary systems Y(NO3)3+La(NO3)3+H2O, La(NO3)3+Ce(NO3)3+H2O, La(NO3)3+Nd(NO3)3+H2O, and their binary subsystems Y(NO3)3+H2O, La(NO3)3+H2O, Ce(NO3)3+H2O, and Nd(NO3)3+H2O at (293.15, 298.15 and 308.15) K. The measured conductivities were used to test the generalized Young’s rule and the semi-ideal solution theory. The comparison results show that the generalized Young’s rule and the semi-ideal solution theory can yield good predictions for the conductivities of the ternary electrolyte solutions, implying that the conductivities of aqueous solutions of (1:3 + 1:3) electrolyte mixtures can be well predicted from those of their constituent binary solutions by the simple equations.  相似文献   

12.
[La(C6H5O7)(H2O)2]·H2O was synthesized as precursor material for an aqueous solution-gel route to La-containing multimetal oxides. The compound was characterized by means of FTIR, TGA and pycnometry. The crystallographic structure was solved from powder diffraction data. The symmetry is monoclinic [a=17.097(3) Å, b=9.765(2) Å, c=6.3166(8) Å and β=90.42(1)°, Zexp=3.96] with space group P21/n (14). Direct methods were applied and the model was subsequently least-squares refined (RB=5.1% and RwP=12.0%). La3+ is nine-fold coordinated, the LaO9 forming a mono-capped square antiprism. The basic unit is a binuclear entity of two LaO9 polyhedra having one edge in common. These units are connected along the c-axis through citrate molecules. The carboxylate groups of the citrate are coordinated to La3+ in monodentate, bidentate and bridging way. Also the alkoxide group, which carries the proton, is coordinated to La3+. Two water molecules complete the coordination sphere, while the third one can be found inbetween the La3+-citrate network.  相似文献   

13.
The new heteroleptic mercury(II) complex PhHgN(SiMe3)2(1) reacts with the strong Brønsted acid [H(OEt2)2][H2N{B(C6F5)3}2] with cleavage of a N-Si bond to give [C6H5Hg(H2NSiMe3)][H2N{B(C6F5)3}2] (2), a phenyl-mercury(II) cation stabilised by a primary amine and a non-coordinating counter-anion. Attempts to generate donor-free aryl mercury cations were not successful. The crystal structure of 2 · CH2Cl2 shows short π-bonding interactions between the metal and the phenyl ring of a neighbouring cation; the geometry about the mercury(II) atom is nearly linear. The X-ray structures of the new salts [H2N(SiMe3)2 · H3NSiMe3][B(C6F5)4]2 and [Et3O][H2N{B(C6F5)3}2] · CH2Cl2 are also presented.  相似文献   

14.
The crystal and molecular structure of hexaphenylditin selenide (C6H5)3SnSeSn(G6H5)3 was determined by X-ray diffraction data and was refined to R  0.055. The compound is monoclinic, space group P21, with a  9.950(4), b  18.650(7), c  18.066(6) Å, β  106.81(4)°, Z  4. The two molecules in the asymmetric unit differ slightly in their conformations, both having approximate C2 symmetry. Bond lengths and angles are: SnSe 2.526 (2.521(3) ? 2.538(3)) Å; SnC 2.138 (2.107(16)?2.168(19)) Å; SnSeSn 103.4(1)°, 105.2(1)°. There are only slight angular distortions at the SnSeC3 tetrahedra (SeSnC angles: 104.3(5)?114.8(4)°). The bond data indicate essentially single bonds around the Sn atoms.  相似文献   

15.
en Two differnt crystal modifications of hexaphenyldigermanium sulfide (C6H5GeSGe(C6H5)3 (I and II were obtained by crystallization from hot benzene/methanol or form ethanol at 20°C. Single crystal X-ray structural analyses for both I (low temperature data at ?130°C) and II (at 20°C) (I, R = 0.046; II, R = 0.048) were performed. I is monoclinic, P21/c, with a = 11.020(3), b = 15.473(3), c 18.606(3) »,π = 106.92(2)°, Z = 4; II is orthorhombic, P212121, with a = 2.617(2), b = 17.345(3), c = 18.408(3) », Z = 4.The molecules have different conformeric structures with respect to a rotation of the (C6H6)3Ge groups around the Ge bonds with very similar bond lenghts and angles. Bond data for I(II) are: GeS 2.212(1) and 2.261(1) » (2.227(2) and 2.240(2) »); GeC 1.933(4) ? 1.971(4), mean 1.945(5) » (1.931(7)?1.954(7), mean 1.943(4) »); GeSGe 111.2(1)° (110.7(1)°). The Ge bond lenghts are comparable to those in thiogermanates and do not indicate significant π-bond contributions.  相似文献   

16.
High pressure vapour-liquid equilibrium data for the C2H6 + N2, C2H4 + N2, C3H8 + N2, and C3H6 + N2 systems are presented. The data are obtained isothermally in the range from 200 K to 290 K. For each point of data, temperature, pressure and liquid and vapour phase mole fractions are measured.Values for the vapour phase mole fractions are calculated from the obtained pressure, temperature and liquid phase mole fractions. The calculated values are compared with the experimental results, and it is found that the average mean deviation between calculated and experimental mole fractions is less than 0.009 for the systems considered in this work.  相似文献   

17.
Fourier transform infrared reflection spectroscopy (incidence angle of 5°) was used to characterize thin films of dimethyl ether (DME) and of mixtures containing water and DME between 10 and 160 K under a pressure of 10−7 mbar. Solid DME has two solid phases: an amorphous phase which is obtained below 65 K and a crystalline phase >65 K. From 90 K, DME begins to sublimate with surface binding energy of 20±2 kJ mol−1. Vibrational spectrum of DME trapped in water ice remains nearly unchanged from 30 to 120 K. Between 120 and 130 K, a large part of DME is released and strong changes in the frequencies and the profile of the absorptions of DME are observed. This behavior suggests the formation of clathrate hydrate. Below 120 K, the trapped DME is hydrogen-bonded to water molecules.  相似文献   

18.
Two new salts of malonic acid have been prepared: the copper(II) malonate tetrahydrate and the copper(II)-ammonium double malonate. Their study by thermal analysis (TG and DTA) leads to the following results:Cu(C3H2O4)·4H2O: the dehydration is rather complex and it is only under careful conditions that an intermediate hydrate Cu(C3H2O4)·3H2O could be traced. At about 170°C the dehydration is not ended (the salt holds yet about 0.15H2O) and the anhydrous salt occurs only at about 240°C. It decomposes immediately leading to residues the composition of which depends upon the surrounding atmosphere; the part played by the gas given off is discussed.Cu(NH4)2(C3H2O4)2: this salt melts and decomposes simultaneously at about 190°C. During the decomposition the copper nitride Cu3N forms as intermediate compound (as well as copper metal). Concerning the final residues of the decomposition the results and the conclusions are the same as the ones of the previous case.  相似文献   

19.
A new form of cobalt succinate has been discovered using high-throughput methods and its structure was solved by single crystal X-ray diffraction. Co7(C4H4O4)4(OH)6(H2O)37H2O crystallizes in the monoclinic space group P21/c with cell parameters: a=7.888(2) Å, b=19.082(6) Å, c=23.630(7) Å, β=91.700(5)°, V=3555(2) Å3, R1=0.0469. This complex structure, containing 55 crystallographically distinct non-hydrogen atoms, is compared to the previously reported nickel phase, characterized using ab initio structure solution from synchrotron powder diffraction data.  相似文献   

20.
The rates of the thermal reaction of the nickel(0) complex Ni[P(C2H5)3]4 with the alkyl halides CH3Br, CH3I in toluene have been compared with those of the reactions of the nickel(I) complexes Ni(X)[P(C2H5)3]3 (X  Br,I). The organic products from CH3X are methane and ethane, and those from C2H5I are ethane and ethylene. The reactivity of the nickel(I) complexes is 10–20 times less than that of the nickel(0) complex. The result suggest that the first step of the reaction of nickel(0) with CH3I is the expected oxidative addition of the halide to the metal substrate. The intermediate thus formed decomposes to produce ethane (and small amounts of methane) without further reaction with the organic halide. This mechanism is supported by deuterium-labeling experiments.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号