首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The infrared(IR) spectra of the N-methylacetamide molecule in water are calculated by using the MD simulation with high-level QM/MM corrections. The B3LYP and MP2 levels with 6-311++G** basis set are used for the QM region, respectively. Our results show all IR spectra at the B3LYP level are well consistent with the corresponding MP2 results. A dynamical charge fluctuation is observed for each atom along the simulation trajectories due to the electrostatic polarization(EP) effects from surrounding solvent environment. We find that the QM/MM corrected IR spectra satisfactorily reproduce the experimental vibrational features of amide I–III modes.  相似文献   

2.
We applied the combined quantum mechanical (QM)/molecular mechanical (MM) molecular dynamics (MD) simulation method in assessing IR spectra of N-methylacetamide and its deuterated form in aqueous solutions. The model peptide is treated at the Austin Model 1 (AM1) level and the induced dipole effects by the solvent are incorporated in fluctuating solute dipole moments, which are calculated using partial charges from Mulliken population analyses without resorting to any available high-level ab initio dipole moment data. Fourier transform of the solute dipole autocorrelation function produces in silico IR spectra, in which the relative peak intensities and bandwidths of major amide bands are quantitatively compatible with experimental results only when both geometric and electronic polarizations of the peptide by the solvent are dealt with at the same quantum-mechanical level. We cast light on the importance of addressing dynamic charge fluctuations of the solute in calculating IR spectra by comparing classical and QM/MM MD simulation results. We propose the adjustable scaling factors for each amide mode to be directly compared with experimental data.  相似文献   

3.
We have implemented the combined quantum mechanical (QM)/molecular mechanical (MM) molecular dynamics (MD) simulations of alanine dipeptide in water along with the polarizable and nonpolarizable classical MD simulations with different models of water. For the QM/MM MD simulation, the alanine dipeptide is treated with the AM1 or PM3 approximations and the fluctuating solute dipole moment is calculated by the Mulliken population analysis. For the classical MD simulations, the solute is treated with the polarizable or nonpolarizable AMBER and polarizable CHARMM force fields and water is treated with the TIP3P, TIP4P, or TIP5P model. It is found that the relative populations of right-handed alpha-helix and extended beta and P(II) conformations in the simulation trajectory strongly depend on the simulation method. For the QM/MM MD simulations, the PM3/MM shows that the P(II) conformation is dominant, whereas the AM1/MM predicts that the dominant conformation is alpha(R). Polarizable CHARMM force field gives almost exclusively P(II) conformation and other force fields predict that both alpha-helical and extended (beta and P(II)) conformations are populated with varying extents. Solvation environment around the dipeptide is investigated by examining the radial distribution functions and numbers and lifetimes of hydrogen bonds. Comparing the simulated IR and vibrational circular dichroism spectra with experimental results, we concluded that the dipeptide adopts the P(II) conformation and PM3/MM, AMBER03 with TIP4P water, and AMBER polarizable force fields are acceptable for structure determination of the dipeptide considered in this paper.  相似文献   

4.
Hydration effects on the C[Triple Bond]N stretching mode frequencies of MeCN and MeSCN are investigated by carrying out ab initio calculations for a number of MeCN-water and MeSCN-water complexes with varying number of water molecules. It is found that the CN frequency shift induced by the hydrogen-bonding interactions with water molecules originate from two different ways to form hydrogen bonds with the nitrogen atom of the CN group. Considering the MeCN- and MeSCN-water cluster calculation results as databases, we first examined the validity of vibrational Stark effect relationship between the CN frequency and the electric field component parallel to the CN bond and found no strong correlation between the two. However, taking into account of additional electric field vector components is a simple way to generalize the vibrational Stark theory for the nitrile chromophore. Also, the electrostatic potential calculation method has been proposed and examined in detail. It turned out that the interactions of water molecules with nitrogen atom's lone pair orbital and with nitrile pi orbitals can be well described by the electrostatic potential calculation method. The present computational results will be of use to quantitatively simulate various linear and nonlinear vibrational spectra of nitrile compounds in solutions.  相似文献   

5.
The authors present a method based on a linear response theory that allows one to optimize the geometries of quantum mechanical/molecular mechanical (QM/MM) systems on the free energy surfaces. Two different forms of linear response free energy functionals are introduced, and electronic wave functions of the QM region, as well as the responses of electrostatic and Lennard-Jones potentials between QM and MM regions, are self-consistently determined. The covariant matrix relating the QM charge distribution to the MM response is evaluated by molecular dynamics (MD) simulation of the MM system. The free energy gradients with respect to the QM atomic coordinates are also calculated using the MD trajectory results. They apply the present method to calculate the free energy profiles of Menshutkin-type reaction of NH3 with CH3Cl and Claisen rearrangement of allyl vinyl ether in aqueous solution. For the Menshutkin reaction, the free energy profile calculated with the modified linear response free energy functional is in good agreement with that by the free energy perturbation calculations. They examine the nonequilibrium solvation effect on the transmission coefficient and the kinetic isotope effect for the Claisen rearrangement.  相似文献   

6.
Structural and dynamical properties of the hydrated Sn(II) ion have been investigated by ab initio quantum mechanical/molecular mechanical (QM/MM) molecular dynamics (MD) simulations at double-zeta HF quantum mechanical level. The results indicate Sn(II)aq to be a rather peculiar, if not unique, case of a hydrated ion: four of its eight first-shell ligands do not take place in the otherwise frequent ligand-exchange processes, forming an approximately tetrahedral cage around the ion. The remaining ligands, however, exchange at a rate that is rather comparable to monovalent than divalent ions. This very surprising behavior of ligand exchange not yet observed in any previous simulation of over 30 hydrated metal ions is consistently confirmed by vibrational spectra, bond lengths, and a detailed analysis of the trajectories of the simulation.  相似文献   

7.
The main concepts and important technical details of electrostatic embedding quantum mechanics/molecular mechanics (QM/MM) simulations are explained and illustrated with the intent of assisting newcomers in performing and gauging the accuracy of such simulations, focused on smaller molecules in solution. Beginners are advised on how to increase the reliability and accuracy of the simulations through benchmarking. Central considerations on methodologies for QM/MM Molecular Dynamics (MD) simulations are presented, alongside technical fundamentals regarding the construction and manipulation of simulation systems using the python-based Atomic Simulation Environment (ASE). A worked example of QM/MM Born–Oppenheimer MD is included, and a flowchart summarizing the most salient decisions and tasks within the methodology is presented.  相似文献   

8.
9.
We present an extensible interface between the AMBER molecular dynamics (MD) software package and electronic structure software packages for quantum mechanical (QM) and mixed QM and classical molecular mechanical (MM) MD simulations within both mechanical and electronic embedding schemes. With this interface, ab initio wave function theory and density functional theory methods, as available in the supported electronic structure software packages, become available for QM/MM MD simulations with AMBER. The interface has been written in a modular fashion that allows straight forward extensions to support additional QM software packages and can easily be ported to other MD software. Data exchange between the MD and QM software is implemented by means of files and system calls or the message passing interface standard. Based on extensive tests, default settings for the supported QM packages are provided such that energy is conserved for typical QM/MM MD simulations in the microcanonical ensemble. Results for the free energy of binding of calcium ions to aspartate in aqueous solution comparing semiempirical and density functional Hamiltonians are shown to demonstrate features of this interface. © 2013 Wiley Periodicals, Inc.  相似文献   

10.
Electronic spectra of guanine in the gas phase and in water were studied by quantum mechanical/molecular mechanical (QM/MM) methods. Geometries for the excited‐state calculations were extracted from ground‐state molecular dynamics (MD) simulations using the self‐consistent‐charge density functional tight binding (SCC‐DFTB) method for the QM region and the TIP3P force field for the water environment. Theoretical absorption spectra were generated from excitation energies and oscillator strengths calculated for 50 to 500 MD snapshots of guanine in the gas phase (QM) and in solution (QM/MM). The excited‐state calculations used time‐dependent density functional theory (TDDFT) and the DFT‐based multireference configuration interaction (DFT/MRCI) method of Grimme and Waletzke, in combination with two basis sets. Our investigation covered keto‐N7H and keto‐N9H guanine, with particular focus on solvent effects in the low‐energy spectrum of the keto‐N9H tautomer. When compared with the vertical excitation energies of gas‐phase guanine at the optimized DFT (B3LYP/TZVP) geometry, the maxima in the computed solution spectra are shifted by several tenths of an eV. Three effects contribute: the use of SCC‐DFTB‐based rather than B3LYP‐based geometries in the MD snapshots (red shift of ca. 0.1 eV), explicit inclusion of nuclear motion through the MD snapshots (red shift of ca. 0.1 eV), and intrinsic solvent effects (differences in the absorption maxima in the computed gas‐phase and solution spectra, typically ca. 0.1–0.3 eV). A detailed analysis of the results indicates that the intrinsic solvent effects arise both from solvent‐induced structural changes and from electrostatic solute–solvent interactions, the latter being dominant. © 2009 Wiley Periodicals, Inc. J Comput Chem 2010  相似文献   

11.
12.
We investigate the effect of systematically applying molecular dynamics (MD) and quantum mechanics/molecular mechanics (QM/MM) to docked poses in an attempt to improve the correspondence between theoretical prediction and experimental observation. The proposed scheme involves running a short time scale MD simulation on a docked ligand pose (and any known structurally important crystal structure waters in the active site), followed by QM/MM minimization. Both of these steps are relatively fast for moderately sized ligands; longer time scale MD involving the protein is not found to improve the results. The final binding energy is given in terms of the QM/MM total energy, a van der Waals correction, and a term to account for desolvation effects. This methodology is first tested with a trypsin inhibitor, for which we establish the importance of running MD before reoptimizing with QM/MM. The method is then applied to cytochrome c peroxidase using a set of binders and decoys. In this example, the proposed methodology affords much better discrimination between binders and decoys than the traditional docking approach used. For both systems presented, application of this protocol results in a significantly better energetic ranking and a smaller root mean squared deviation from known crystallographic ligand poses. This work highlights the importance of including polarization effects through QM/MM and of sampling with MD to refine a set of initial docked poses.  相似文献   

13.
During the past years, the use of combined quantum-classical, QM/MM, methods for the study of complex biomolecular processes, such as enzymatic reactions and photocycles, has increased considerably. The quality of the results obtained from QM/MM calculations is largely dependent on five aspects to be considered when setting up a molecular model: the QM Hamiltonian, the MM Hamiltonian or force field, the boundary and coupling between the QM and MM regions, the size of the QM region and the boundary condition for the MM region. In this study, we systematically investigate the influence of a variation of the molecular mechanics force field and the size of the QM region in QM/MM MD simulations on properties of the photoactive part of the blue light photoreceptor protein AppA. For comparison, we additionally performed classical MD simulations and studied the effect of a variation of the type of spatial boundary condition. The classical boundary conditions and the force field used in a QM/MM MD simulation are shown to have non-neglegible effects upon the structural and energetic properties of the protein which makes it advisable to minimize computational artifacts in QM/MM MD simulations by application of periodic boundary conditions and a thermodynamically calibrated force field. A comparison of the structural and energetic properties of MD simulations starting from two alternative, different X-ray structures for the blue light utilizing flavin protein in its dark state indicates a slight preference of the two force fields used for the so-called Anderson structure over the Jung structure.  相似文献   

14.
The newly implemented quantum‐chemical/molecular‐mechanical (QM/MM) functionality of the Groningen molecular simulation (GROMOS) software for (bio)molecular simulation is described. The implementation scheme is based on direct coupling of the GROMOS C++ software to executables of the quantum‐chemical program packages MNDO and TURBOMOLE, allowing for an independent further development of these packages. The new functions are validated for different test systems using program and model testing techniques. The effect of truncating the QM/MM electrostatic interactions at various QM/MM cutoff radii is discussed and the application of semiempirical versus density‐functional Hamiltonians for a solute molecule in aqueous solution is compared. © 2012 Wiley Periodicals, Inc.  相似文献   

15.
Born‐Oppenheimer ab initio QM/MM molecular dynamics simulation with umbrella sampling is a state‐of‐the‐art approach to calculate free energy profiles of chemical reactions in complex systems. To further improve its computational efficiency, a mass‐scaling method with the increased time step in MD simulations has been explored and tested. It is found that by increasing the hydrogen mass to 10 amu, a time step of 3 fs can be employed in ab initio QM/MM MD simulations. In all our three test cases, including two solution reactions and one enzyme reaction, the resulted reaction free energy profiles with 3 fs time step and mass scaling are found to be in excellent agreement with the corresponding simulation results using 1 fs time step and the normal mass. These results indicate that for Born‐Oppenheimer ab initio QM/MM molecular dynamics simulations with umbrella sampling, the mass‐scaling method can significantly reduce its computational cost while has little effect on the calculated free energy profiles. © 2009 Wiley Periodicals, Inc. J Comput Chem, 2009  相似文献   

16.
The hydration structure of Cr(2+) has been studied using molecular dynamics (MD) simulations including three-body corrections and combined ab initio quantum mechanical/molecular mechanical (QM/MM) MD simulations at the Hartree-Fock level. The structural properties are determined in terms of radial distribution functions, coordination numbers, and several angle distributions. The mean residence time was evaluated for describing ligand exchange processes in the second hydration shell. The Jahn-Teller distorted octahedral [Cr(H(2)O)(6)](2+) complex was pronounced in the QM/MM MD simulation. The first-shell distances of Cr(2+) are in the range of 1.9-2.8 A, which are slightly larger than those observed in the cases of Cu(2+) and Ti(3+). No first-shell water exchange occurred during the simulation time of 35 ps. Several water-exchange processes were observed in the second hydration shell with a mean residence time of 7.3 ps.  相似文献   

17.
A massively parallel program for quantum mechanical‐molecular mechanical (QM/MM) molecular dynamics simulation, called Platypus (PLATform for dYnamic Protein Unified Simulation), was developed to elucidate protein functions. The speedup and the parallelization ratio of Platypus in the QM and QM/MM calculations were assessed for a bacteriochlorophyll dimer in the photosynthetic reaction center (DIMER) on the K computer, a massively parallel computer achieving 10 PetaFLOPs with 705,024 cores. Platypus exhibited the increase in speedup up to 20,000 core processors at the HF/cc‐pVDZ and B3LYP/cc‐pVDZ, and up to 10,000 core processors by the CASCI(16,16)/6‐31G** calculations. We also performed excited QM/MM‐MD simulations on the chromophore of Sirius (SIRIUS) in water. Sirius is a pH‐insensitive and photo‐stable ultramarine fluorescent protein. Platypus accelerated on‐the‐fly excited‐state QM/MM‐MD simulations for SIRIUS in water, using over 4000 core processors. In addition, it also succeeded in 50‐ps (200,000‐step) on‐the‐fly excited‐state QM/MM‐MD simulations for the SIRIUS in water. © 2016 The Authors. Journal of Computational Chemistry Published by Wiley Periodicals, Inc.  相似文献   

18.
We present an alternative approach to determine "density-dependent property"-derived charges for molecules in the condensed phase. In the case of a solution, it is essential to take into consideration the electron polarization of molecules in the active site of this system. The solute and solvent molecules in this site have to be described by a quantum mechanical technique and the others are allowed to be treated by a molecular mechanical method (QM/MM scheme). For calculations based on this scheme, using the forces and interaction energy as density-dependent property our charges from interaction energy and forces (CHIEF) approach can provide the atom-centered charges on the solute atoms. These charges reproduce well the electrostatic potentials around the solvent molecules and present properly the picture of the electron density of the QM subsystem in the solution system. Thus, the CHIEF charges can be considered as the atomic charges under the conditions of the QM/MM simulation, and then enable one to analyze electrostatic interactions between atoms in the QM and MM regions. This approach would give a view of the QM nuclei and electrons different from the conventional methods.  相似文献   

19.
The quantum chemistry polarizable force field program (QuanPol) is implemented to perform combined quantum mechanical and molecular mechanical (QM/MM) calculations with induced dipole polarizable force fields and induced surface charge continuum solvation models. The QM methods include Hartree–Fock method, density functional theory method (DFT), generalized valence bond theory method, multiconfiguration self‐consistent field method, Møller–Plesset perturbation theory method, and time‐dependent DFT method. The induced dipoles of the MM atoms and the induced surface charges of the continuum solvation model are self‐consistently and variationally determined together with the QM wavefunction. The MM force field methods can be user specified, or a standard force field such as MMFF94, Chemistry at Harvard Molecular Mechanics (CHARMM), Assisted Model Building with Energy Refinement (AMBER), and Optimized Potentials for Liquid Simulations‐All Atom (OPLS‐AA). Analytic gradients for all of these methods are implemented so geometry optimization and molecular dynamics (MD) simulation can be performed. MD free energy perturbation and umbrella sampling methods are also implemented. © 2013 Wiley Periodicals, Inc.  相似文献   

20.
The viability of alpha-carbon deuterated bonds (Calpha-D) as infrared (IR) probes of protein backbone dynamics was explored through a combination of experiment and theory. alpha-Carbon deuterated alanine (Ala-d1) served as a convenient model system for a comparison of experiment, density functional theory (DFT), and combined quantum mechanical/molecular mechanical (QM/MM) simulations of the Calpha-D IR line shape. In addition to the primary Calpha-D absorption, the experimental spectrum contains three features that likely result from Fermi resonances. DFT calculations supported the assignments and identified the lower frequency modes participating in the Fermi resonances. A QM/MM simulation of the Ala-d1 line shape was in qualitative agreement with the experiment, including the presence of classical analogues of Fermi resonances. These studies demonstrated that the Calpha-D line shape is sensitive, via Fermi resonances, to lower frequency collective vibrations that are expected to play a role in protein dynamics and function, and that the QM/MM approach, which is applicable to proteins, is capable of aiding in their interpretation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号