首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 437 毫秒
1.
The homogeneous nucleation of a crystal in an overcooled aluminum melt was modeled by the molecular dynamics (MD) method. The MD simulation used the embedded-atom potential. The crystallization delay times were determined from MD simulation data. In a set of systems at the same temperature and pressure, the lifetimes were distributed exponentially. Nucleation frequencies at different temperatures and pressures were determined. The resulting nucleation frequencies were compared with the ones predicted by classical nucleation theory.  相似文献   

2.
Two kinds of the homogeneous nucleation theory exist at the present: the classical nucleation theory and the semiphenomenological model. To test them, we performed molecular-dynamics (MD) simulations of nucleation from vapor to liquid with 5000-20,000 Lennard-Jones-type molecules. Simulations were done for various values of supersaturation ratios (from 2 to 10) and temperatures (from 80 to 120 K). We compared the size distribution of clusters in MD simulations with those in the theoretical models because the number density of critical clusters governs the nucleation rate. We found that the semiphenomenological model achieves excellent agreements in size distributions of the clusters with all MD simulations we done. The classical theory underestimates the number density of the clusters in the temperature range of 80-100 K, but overestimates in 100-120 K. The semiphenomenological model also predicts well the nucleation rate in MD simulations, while the classical nucleation theory does not. Our results confirmed the validity of the semiphenomenological model for Lennard-Jones-type molecules.  相似文献   

3.
Klein DH  Driy JA 《Talanta》1966,13(2):289-295
Heterogeneous and homogeneous nucleation processes of strontium sulphate have been studied, using a homogeneous precipitation technique together with electronic particle counting. Four different heterogeneous nucleation processes were observed in solutions purified by conventional filtration. In solutions purified by continued circulation through a fibre-glass filter mat, homogeneous nucleation was observed at supersaturations about 10.75. The rate of homogeneous nucleation was found to depend on the 27th power of the sulphate concentration, indicating that the nucleus contains 52 ions. The results support the theory of homogeneous nucleation presented by Nielson.  相似文献   

4.
We present an overview of the current status of experimental, theoretical, molecular dynamics (MD), and density functional theory (DFT) studies of argon vapor-to-liquid nucleation. Since the experimental temperature-supersaturation domain does not overlap with the corresponding MD and DFT domains, separate comparisons have been made: theory versus experiment and theory versus MD and DFT. Three general theoretical models are discussed: Classical nucleation theory (CNT), mean-field kinetic nucleation theory (MKNT), and extended modified liquid drop model-dynamical nucleation theory (EMLD-DNT). The comparisons are carried out for the area below the MKNT pseudospinodal line. The agreement for the nucleation rate between the nonclassical models and the MD simulations is very good--within 1-2 orders of magnitude--while the CNT deviates from simulations by about 3-5 orders of magnitude. Perfect agreement is demonstrated between DFT results and predictions of MKNT (within one order of magnitude), whereas CNT and EMLD-DNT show approximately the same deviation of about 3-5 orders of magnitude. At the same time the agreement between all theoretical models and experiment remains poor--4-8 orders of magnitude for MKNT, 12-14 orders for EMLD-DNT, and up to 26 orders for CNT. We discuss possible reasons for this discrepancy and the ways to carry out experiment and simulations within the common temperature-supersaturation domain in order to produce a unified picture of argon nucleation.  相似文献   

5.
6.
We have performed Monte Carlo simulations of homogeneous and heterogeneous nucleations of Lennard-Jones argon clusters. The simulation results were interpreted using the major concept posing a difference between the homogeneous and heterogeneous classical nucleation theories-the contact parameter. Our results show that the multiplication concept of the classical heterogeneous nucleation theory describes the cluster-substrate interaction surprisingly well even for small molecular clusters. However, in the case of argon nucleating on a rigid monolayer of fcc(111) substrate at T=60 K, the argon-substrate atom interaction being approximately one-third as strong as the argon-argon interaction, the use of the classical theory concept results in an underestimation of the heterogeneous nucleation rate by two to three orders of magnitude even for large clusters. The main contribution to this discrepancy is induced by the failure of the classical theory of homogeneous nucleation to predict the energy involved in bringing one molecule from the vapor to the cluster for clusters containing less than approximately 15 molecules.  相似文献   

7.
The metadynamics method for accelerating rate events in molecular simulations is applied to the problem of ice freezing. We demonstrate homogeneous nucleation and growth of ice at 180 K in the isothermal-isobaric ensemble without the presence of external fields or surfaces. This result represents the first report of continuous and dynamic ice nucleation in a system of freely evolving density. Simulations are conducted using a variety of periodic simulation domains. In all cases the cubic polymorph ice I(c) is grown. The influence of boundary effects on estimates of the nucleation free energy barrier are discussed in relation to differences between this and earlier work.  相似文献   

8.
The traditional theory for binary homogeneous nucleation follows the classical derivation of the nucleation rate in the supposition of a hypothetical constrained-equilibrium distribution in the calculation of the cluster evaporation rate. This model enables calculation of the nucleation rate, but requires evaluation of the cluster distribution and cluster properties for an unstable equilibrium with supersaturated vapor. An alternate derivation of the classical homomolecular nucleation rate eliminated the need for this nonphysical approximation by calculating the evaporative flux at full thermodynamic equilibrium. The present paper develops that approach for binary nucleation; the framework is readily extended to ternary nucleation. In this analysis, the evaporative flux is evaluated by applying mass balance at full thermodynamic equilibrium of the system under study. This approach eliminates both the need for evaluating cluster properties in an unstable constrained-equilibrium state and ambiguity in the normalization constant required in the nucleation-rate expression. Moreover, it naturally spans the entire composition range between the two pure monomers. The cluster fluxes derived using this new model are similar in form to those of classical derivations, so previously developed methods for evaluation of the net nucleation rate can be applied directly to the new formulation.  相似文献   

9.
我们利用Born-Mayer-Huggins相互作用势函数对(KF)N(N=108,256,500和864)团簇进行了分子动力学(MD)模拟。为了避免周期性边界条件对相变、成核和重结晶的干扰作用,对体系采用了自由边界。基于MD模拟结果,对团簇的熔化温度、熔化焓、扩散系数、成核速率、固液界面自由能、临界核大小等进行了计算和讨论。在对(KF)864双晶团簇的热退火模拟中,观察到了固态的重结晶和晶粒的生长。经典的成核理论成功地解释了(KF)864双晶团簇的重结晶MD模拟结果。  相似文献   

10.
Previous equilibrium-based density-functional theory (DFT) analyses of cavity formation in the pure component superheated Lennard-Jones (LJ) liquid [S. Punnathanam and D. S. Corti, J. Chem. Phys. 119, 10224 (2003); M. J. Uline and D. S. Corti, Phys. Rev. Lett. 99, 076102 (2007)] revealed that a thermodynamic limit of stability appears in which no liquidlike density profile can develop for cavity radii greater than some critical size (being a function of temperature and bulk density). The existence of these stability limits was also verified using isothermal-isobaric Monte Carlo (MC) simulations. To test the possible relevance of these limits of stability to a dynamically evolving system, one that may be important for homogeneous bubble nucleation, we perform isothermal-isobaric molecular dynamics (MD) simulations in which cavities of different sizes are placed within the superheated LJ liquid. When the impermeable boundary utilized to generate a cavity is removed, the MD simulations show that the cavity collapses and the overall density of the system remains liquidlike, i.e., the system is stable, when the initial cavity radius is below some certain value. On the other hand, when the initial radius is large enough, the cavity expands and the overall density of the system rapidly decreases toward vaporlike densities, i.e., the system is unstable. Unlike the DFT predictions, however, the transition between stability and instability is not infinitely sharp. The fraction of initial configurations that generate an instability (or a phase separation) increases from zero to unity as the initial cavity radius increases over a relatively narrow range of values, which spans the predicted stability limit obtained from equilibrium MC simulations. The simulation results presented here provide initial evidence that the equilibrium-based stability limits predicted in the previous DFT and MC simulation studies may play some role, yet to be fully determined, in the homogeneous nucleation and growth of embryos within metastable fluids.  相似文献   

11.
An attempt is made to critically analyze the modern state of the theory of homogeneous nucleation as concerns its ability to describe experiments with high accuracy. An analysis of the experimental data led us to conclude that the dependence of the nucleation rate on supersaturation and temperature T was not described by the theory, which underestimates the critical cluster size compared with the Gibbs-Thomson equation. The possibility of applying density functional theory (one of the latest achievements in the theory of homogeneous nucleation) was questioned. Within this theory, the Gibbs-Thomson equation remains valid even outside the classic capillary approximation. It is suggested that, to bring theory in consistency with experiment, certain fundamental propositions of the theory of nucleation should be revised. The inclusion of an additional contribution to the Gibbs energy of a cluster caused by the size dependence of the specific heat capacity of the cluster decreases the critical cluster size compared with the value calculated by the Gibbs-Thomson equation. The calculated dependence of nucleation rate on supersaturation was in agreement with the experimental results.  相似文献   

12.
13.
A new method is presented that provides experimental information which is qualitatively and quantitatively sensitive to assumptions made as to the mechanisms of free radical entry and of latex particle formation in emulsion polymerization systems. The method consists of (1) obtaining (by electron microscopy) the full particle-size distributions (PSDs) at several different times soon after the cessation of latex particle nucleation, (2) using these PSDs to determine the volume dependences of the various rate coefficients governing particle growth by fitting the data to the appropriate evolution equations, and (3) employing these empirical rate coefficients to find that time dependence of the nucleation rate which fits the early-time PSD (again using the evolution equations). This method is quite sensitive to mechanistic assumptions: for example, one is able to determine whether or not the nucleation rate is an increasing or decreasing function of time. The technique is applied to a styrene nucleation system employing sodium dodecyl sulfate as surfactant at well above the critical micelle conventration. The data cannot be fitted even qualitatively by a simple one-step nucleation mechanis, whether it involes micellar entry or homogeneous nucleation. It is found, on the other hand, that the results can be accurately fitted by assuming that coagulation events between primary colloidal particles, perhaps formed by homogeneous nucleation, dominate both the nucleation process and the entry of free radicals into mature latex particles. In addition, the data indicate that the rate of free radical entry into the latex particles decreases with increasing particle size, at least for particles of unswollen radius less than ca. 40 nm.  相似文献   

14.
Molecular dynamics (MD) computer simulations have been carried out to study the structures, properties and crystal nucleation of nanoparticles with 453 Cu atoms. Structure information was analyzed from the MD simulations, while properties of nanoparticles of Cu453, such as melting point, freezing temperature, heat capacity and mo- lar volumes, have been estimated. The face center cubic (FCC) phase and icosahedron (Ih) phase were observed during the quenching process, and nucleation rates of crystallization to FCC crystal of Cu453 at temperatures of 650, 700, 750, and 800 K were analyzed. Both classical nucleation theory (CNT) and diffuse interface theory (DIT) were used to interpret our observed nucleation rates. The free energy and diffuse interface thickness between the liquid and the FCC crystal phases were estimated by the CNT and DIT respectively, and the results show that the DIT does not work properly to the system.  相似文献   

15.
Classical heterogeneous nucleation theory is used to describe the epitaxial nucleation of calcite on self-assembled monolayers (SAMs). Both spherical and faceted clusters are considered. The use of faceted clusters reveals a useful relation between the shape of very small crystals and the ratio of the heterogeneous and homogeneous nucleation barriers. The experimental approach of this paper concerns the measurement of the threshold driving forces for both homogeneous and heterogeneous nucleation of calcite. This is accomplished by preparing solutions with well-defined driving forces and by measuring the resulting types of nucleation that are observed after a fixed experimental time. The results of the experiments and the theoretical shape analysis are compared, and it is shown that in the experiments no homogeneous nucleation of calcite occurs for driving forces up to at least Deltamu/k(B)T approximately equal to 6.0. A calculation of the critical cluster size for heterogeneous nucleation results in a range of 2-28 growth units and faceted critical clusters from 3-28 growth units, depending on the value of the surface free energy of calcite. These sizes are 50-100 times smaller than the crystalline domain sizes of SAMs and therefore small enough to explain the promoting effect of the substrate.  相似文献   

16.
Cluster distribution kinetics is adopted to explore the kinetics of polymer crystallization. Population balance equations based on crystal size distribution and concentration of amorphous polymer segments are solved numerically and the related dynamic moment equations are also solved. The model accounts for heterogeneous or homogeneous nucleation and crystal growth. Homogeneous nucleation rates follow the classical surface-energy nucleation theory. Different mass dependences of growth and dissociation rate coefficients are proposed to investigate the fundamental features of nucleation and crystal growth. A comparison of moment solutions with numerical solutions examines the validity of the model. The proposed distribution kinetics model provides a different interpretation of the familiar Avrami equation.  相似文献   

17.
Classical nucleation theory pictures the homogeneous nucleation of a crystal as the formation of a spherical crystalline embryo, possessing the properties of the macroscopic crystal, inside a parent supercooled liquid. In this work we study crystal nucleation in moderately supercooled sulfur hexafluoride by umbrella sampling simulations. The nucleation free energy evolves from 5.2kBT at T=170 K to 39.1kBT at T=195 K. The corresponding critical nucleus size ranges from 40 molecules at T=170 K to 266 molecules at T=195 K. Both nucleation free energy and critical nucleus size are shown to evolve with temperature according to the equations derived from the classical nucleation theory. Inspecting the obtained nuclei we show, however, that they present quite anisotropic shapes in opposition to the spherical assumption of the theory. Moreover, even though the critical nuclei possess the structure of the stable bcc plastic phase, the only mechanically stable crystal phase for SF6 in the temperature range investigated, they are shown to be less ordered than the corresponding macroscopic crystal. Their crystalline order is nevertheless shown to increase regularly with their size. This is confirmed by a study of a nucleus growth from a critical size to a size of the order of 10(4) molecules. Similarly to the fact that it does not affect the temperature dependence of the nucleation free energy and of the critical nucleus size, the ordering of the nucleus with size does not affect the growth rate of the nucleus.  相似文献   

18.
为了研究冷冻过程中胞内溶液均相成核温度下降值与平衡凝固点下降值的关系, 提出了一种求解变组元系统成核温度的方法, 并联合细胞脱水方程, 进行了数值求解. 研究发现, 甘油-氯化钠-水三元系统的均相成核温度下降与平衡凝固点下降存在如下的线性关系: ⊿Th=1.17⊿Tm, 表明水溶液均相成核温度与溶质有关.  相似文献   

19.
Molecular dynamics simulations are conducted to investigate homogeneous nucleation and growth of melt in copper described by an embedded-atom method (EAM) potential. The accuracy of this EAM potential for melting is validated by the equilibrium melting point obtained with the solid-liquid coexistence method and the superheating-supercooling hysteresis method. We characterize the atomistic melting process by following the temperature and time evolution of liquid atoms. The nucleation behavior at the extreme superheating is analyzed with the mean-first-passage-time (MFPT) method, which yields the critical size, steady-state nucleation rate, and the Zeldovich factor. The value of the steady-state nucleation rate obtained from the MFPT method is consistent with the result from direct simulations. The size distribution of subcritical nuclei appears to follow a power law similar to three-dimensional percolation. The diffuse solid-liquid interface has a sigmoidal profile with a 10%-90% width of about 12 A near the critical nucleation. The critical size obtained from our simulations is in reasonable agreement with the prediction of classical nucleation theory if the finite interface width is considered. The growth of melt is coupled with nucleation and can be described qualitatively with the Johnson-Meh-Avrami law. System sizes of 10(3)-10(6) atoms are explored, and negligible size dependence is found for bulk properties and for the critical nucleation.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号